fay
Y
University of Twente
Enschede - The Netherlands

#GIMN UNIVERSITAT Radboud

iy DES S5 Uni i

BENY e a et ANDES ;@5 ¢University

: e Nijmegen

Rm RHEINISCH-
WESTFALISCHE
TECHNISCHE
HOCHSCHULE
AACHEN

Manual

MARKOV REWARD
MODEL CHECKER

Version 1.3

June 17, 2008
Authors:
Ivan S. Zapreev
Christina Jansen

nijmeegs instituut
voor informatica
en informatiekunde

Formal
ﬁ Methods
& Tools

O *

niii

Contents

1 Introduction 2
2 MRMC tool description 5
3 Building MRMC 9
3.1 Building MRMC fromsourcecode 9
3.1.1 Getting&lInstallingGSL 9

3.1.2 LINUX . . . o e e 10

3.1.3 Windows 10

3.1.4 MacOS X 10

3.2 Getting & Installing TestSuite 10
3.2.1 Configuringtests 10

4 MRMC'’s Input Files 12
41 Thetra FileFormat 12
4.2 Thelab FileFormat 12
4.3 Thectmdpi FileFormat 13
4.4 Therew FileFormat 14
45 Therewi FileFormat, 14
46 GetingMRMCmodels 14
46.1 PRISM 15

4.6.2 Performance Evaluation Process Algebra (PEPA) 16

5 Running MRMC 17
51 Commandlineoptions 17

6 MRMC run-time Commands 18
6.1 BasicCommands 18
6.1.1 help 18

6.1.2 help logic 19

6.1.3 help simulation o 19

6.1.4 help rewards 21

6.1.5 help common 21

6.1.6 print 22

6.2 Advanced Commands 23
6.2.1 Common e e 23

6.2.2 NumericalMethods 24

6.2.3 Simulation 24

6.24 Rewards. 26

7 Property Specification with Temporal Logics 28
7.1 Common-logicsubset 28
7.1.1 StateformulaeSFL) 29

7.1.2 PathformulaeRFL), 29

7.2 PCTL . . . e 29
7.3 PRCTL e e 30
7.4 CSL . . e e e e 30
75 CSRL e 31

8 Model Checking by Discrete Event Simulations 32

8.1 Confidence intervals and model checking 33
8.1.1 Simpleproblem. 33

8.1.2 Usingconfidenceintervals 33

8.1.3

Solvingtheproblems

8.2 Simulationengine e

9 MRMC Test Suite

10 Contact

A CTMDPI: Model examples

A.1 Markov decCiSion ProCeSSES« v v v v e e e e e e e

A.1.1 Markov decision processes with internal non detelsmin

B RNG Investigations

B.1 Random Number Generators

B.2

B.3

B.1.1
B.1.2
B.1.3
B.1.4
B.1.5

Linear Congruential Generator (LCGprAsm
Improved LCGPM8] (ILCG) —ciardo
Combined LCG$ch9 (CLCG) —app crypt
Mersenne Twisten{N98] (Twister) —ymer
RNGs from GSLIPtFSFO7b L

Experimentalsetup

B.2.1
B.2.2

Non-Uniform Discrete Random Variables

Exponentially Distributed Random Variables

RNG comparison-results o

B.3.1
B.3.2

Non-Uniformly Random Numbers

Exponentially Distributed Random Numbers

47
47
48

1 Introduction

Model checking is an automated technique that establishesher certain qualitative prop-
erties such as deadlock-freedom or request-responseeewgrits (“does a request always
lead to a response?”) hold in a model of the system under @eration. Such mod-
els are typically transition systems that specify how thstey can evolve during execu-
tion. Properties are usually expressed in temporal exaasf propositional logic, such as
CTL [CESS84.

In the last years adapting model checking to probabilistgtesns has been a rather ac-
tive research field. This has resulted in efficient algorghior model-checking DTMCs
and CTMCs, as well as Markov decision processes (MDPs), dteatsupported by sev-
eral tools nowadays such asHMC?[HKMKS00], PRISM[HKNPO€], GreatSPNEDHO(],
VESTA[SVAOS], Ymer[You05H, and the APNN ToolboxfFKTO03. Various case studies
have proven the usefulness of these model checkers. Pdpgies are Probabilistic CTL
(PCTL) [HJ94 and Continuous Stochastic Logic (CSIHHHKO03].

Although these model checkers are able to handle a largd sstasures of interest, the
reward-based measures have received scant attention déafdov Reward Model Checker
(MRMC) allowes for verification of Markoveward models (MRMs), in particular DMRMs
and CMRMs. These are the underlying semantic models of wautiagh-level performance
modeling formalisms, such as reward extensions of stoichpicess algebras, stochastic
reward nets, and so on.

MRMC [KKZ05, JKO"07, Zap0§ supports the following types of probabilistic models:

e Discrete time Markov chains (DTMCs)

e Continuous time Markov chains (CTMCs)

e Discrete time Markov Reward models (DMRMSs)

e Continuous time Markov Reward models (CMRMS)

e Continuous time Markov decision processes (CTMBPIs

Hence, MRMC support$robabilistic Computation Tree Logic (PCTland Continuous
Stochastic Logic (CSUfpr property specification as well as their reward extensirba-
bilistic Reward Computation Tree Logic (PRCTdr)dContinuous Stochastic Reward Logic
(CSRL) Table 1.1 provides correspondence between the before-mentionécslagd the
supported models.

For PCTL the realized algorithms are mostly discussed bysklamand Jonsson ikl 94.
The exception is a long-run operator which is handled smhildhe steady-state operator of

IHere, | stands for the internal non-determinism.

DTMC | CTMC | DMRM | CMRM | CTMDPI
PCTL +
CSL + +a
PRCTL +
CSRL +

aThere is no support for the steady-state and unboundedréiandability properties.

Table 1.1: The supported models and the correspondingslogic

CSL. The supported algorithms for PRCTL have been deschiethdovaet al.[AHKO3].
Model-checking techniques for CSL (on CTMCs) are deriveanfi{BHHKO03] and for its
reward extension CSRL fronC[KKP05 (see alsoBHHKO00, HCH"07)). For the latter one
we have implemented two algorithms for time- and reward-oleal until formulae. One is
based on discretizatiori [/00] and another on uniformization and path truncatiqQrspqg.
The algorithms for PRCTL and CSRL support both state and iseptewards. Model-
checking of CSL (on CTMDPIs) implements procedures desdrih [BHKHO5, BHH"06].

Itis important to note that the model-checking proceduntsgrated in MRMC were com-
plemented with the following extensions that are aimed a@troving the tool’s performance
and accuracy:

Steady-state (long-run) operator of CSL (PCTL). For the operatoB..., (V) the al-
gorithmic improvement lies with searching only for BSCCattlban containl states, as
opposed to searching for all BSCCs. The modification thatdeee to the model-checking
algorithms is straightforward and therefore we do not e@rptan further details.

Unbounded-until operator of CSL (PCTL). For model checking.., (® U), we
first exclude states, using graph reachability analys@nfwhich ¥ states are always or
never reachable. Then the model checking procedure foethaining states is carried out
as usual. All techniques required for this improvement ascdbed in CG04.

Time-bounded until operator of CSL. We have implemented a uniformization pro-
cedure BHHKO3] with a precise on-the-fly steady-state detection whichissuksed in
[KZ05, KZ06]. Similar to unbounded-until operator, the technique@t4] is employed to
detect and remove states from which thetates are never reached. Also we employ ideas,
described in {KNPO1], that allow to compute the reachability probabilities &t initial
states at once.

Bisimulation minimization. The bisimulation minimization algorithms have been real-
ized for PCTL, CSL, PRCTL and CSRL, in the latter two casehaut impulse rewards.
For more details considexKKZJ07].

Model checking by discrete event simulation. We developed and implemented al-
gorithms for model-checking CSL properties by simulatidnfioite-state CTMCs. Our
approach is based on Monte Carlo simulation and derivatfacoofidence intervals. We

provide statistical algorithms for model checking the maogtresting CSL operators, such
as steady-state, unbounded-reachability, and timevilteeachability operators. For more
details we refer to4ap04.

The remainder of the manual is organized as follows. In Girépive discuss platforms
supported by MRMC, the implementation language and licensiFurther, we illustrate
the tool usage and introduce a snapshot of MRMC architestiargimple examples. The
next chapter, Chapté&; explains the installing process of the tool. The inputfllenats of
MRMC are discussed in Chaptér Chapters is devoted to command-line options provided
by the tool, while in Chaptes a list of all available MRMC commands and run-time options
is given. The semantics of all supported logics are intredua Chaptei7 and afterwords
information about model checking by means of simulationvergin ChapteB. Chapterd
speaks about MRMC's test suite, while Chaptéconcludes with the list of groups involved
in the MRMC development and the corresponding contact méamion.

2 MRMC tool description

MRMC is a command-line tool that supports an easy input forana is realized in the C
programming language. The latter allows the tool to be samallfast due to compiler-based
optimizations and smart memory management within the implaation { 1. Also,
MRMC uses simple but high-performance data structured) aaca slightly modified ver-
sion of the well-known compressed-row, compressed-coltgpresentation of probability
(rate) matrices, and bit vectors for representing setsatést For more information about
the MRMC architecture, algorithms and data structures ¥ te Section 2.2 off].
Since MRMC v1.2.2 the tool supports all major platforms, ednMicrosoft Windows,
Linux and Mac OS X. The tool is distributed under the GNU GahPublic License (GPL)
[pand is available for free download at:

http://www.mrmc-tool.org/

| cTMc| | DTMC | [CTMDPI| | AP labeling| | Rewards|
\/ ¢ ¢ ¢ Options

[tra ﬁle] [.ctmdpi ﬁle] [.lab ﬁle] [.rew/ .rewi ﬁles]

H

Y Yy
M R M C Input-file reader Options analyzer
\ \
Internal-data storage: Runtime settings
23 @ Sparse matrices, etgc. ‘ ‘
@ 35 = : - Commands
3 32 | Common model checking o
o 2 o
— —— 3
§S 4| 4 3
R 5 2o <§’>] PRCTL
= 1
x Q|5 = 2 PCTL
= Q o
o= D_ — 3
®9m3 o !
c 298 = 5
g @ L8 = m g CSRL
g 0s 3 Q e
o @29] =4 @ CSL
© a>3 O > =
g o 3 o

Y
[State probabilities]

Figure 2.1: Tool architecture of MRMC

A sketch of the MRMC tool architecture is provided in Fig@xd. Below we refer to it
for illustration purposes when giving examples of MRMC itggwutputs and functionality.

http://www.mrmc-tool.org/

{loss} {goal}
Figure 2.2: The dice game: DMRM model

Example 1 Consider a dice with only four wedges that have numbg2s3 and4 imprinted

on them. Let the dice be biased in such a way that we get theebeifentioned outcomes
with probabilities0.4 0.3, 0.2 and0.1 respectively. One can now play a simple game where
the game round consists of continuously tossing the diagewinining, if the outcome ig

and the accumulated outcome is frérto 50, or losing, if the outcome is.

A natural question rises: Is the probability to win this ggraey. within100 tosses, larger
than0.5? The answer to such a question can be given if we represargdme as a DMRM
model and reformulate the question in terms of the PRCTIclogi

The required DMRM is provided in Figur2.2. Here we have five states where state
represents the moment at which the dice is tossed and state2 to 5 correspond to the
dice outcomes from to 4. These outcomes are transformed into state rewards aneglac
next to the states in the square braces. Assandgoalstates are marked by labels enclosed
in the curly braces. Thegoallabel corresponds to the outcordeand in order to win, by
reaching this state, the accumulated outcome has to berwitand 50.

The measure-of-interest can be formulated &s; <ﬂl055 U{gzéz]g] goal). The given
property asserts that the probability to reach thea! state, without visiting théoss state
within 199 time steps, and the accumulated reward being ffota 50, is larger than0.5.
Notice that we have the upper time bouttid that in the model corresponds t®0 dice

tosses.

On the start up, MRMC accepts several command-line optags,that specify the model
(CTMC, DTMC, etc.), and expects five input filesitea —file describing the probability or
rate matrix of a DTMC, CTMC or an MRM, dab - file indicating the state labeling with
atomic propositions, a&tmdpi - file describing the rate matrix and the transition labeling
of a CTMDPI, arew -—file specifying the state-reward structure of an MRM, ancwi
— file specifying the impulse-reward structure of an MRM. Biirsupported model types
either the.tra or.ctmdpi and.lab files are compulsory, whereagw and.rewi
files are used only for specifying reward models.

Example 2 The DMRM model of Examplecan be seen as a superposition of three parts:
(i) the DTMC given by state-transitions and correspondingritlistions, (i) the labeling

function that maps sets of labels to the DTMC states, @ndthe state-reward function
that maps reward values to the DTMC states. In order to be wadd MRMC, all these
three parts have to be transformed into the MRMC input filegh& translation is given in
Table2.1

Thegame.tra file contains an intuitive text-based representation of@éMC, i.e. its
state transitions and corresponding probabilities. Tane.lab file contains label decla-
rations and maps sets of labels to the states of DTMC. Siiptlaegame.rew file contains
mapping of the state rewards to the model states.

In order to start MRMC with the given input files the followiogmmand should be ex-
ecuted in a shell environment such esh bashon Linux (Mac OS X), oDos command
prompton Microsoft Windows:

MRMC/bin> mrmc dmrm game.tra game.lab game.rewi

When executed, this command starts MRMC by triggering akweéiits components, see
Figure 2.1 First “Options analyzer” parses the command-line arguntgrsetting up the
DMRM model as the current one in the “Runtime settings” compoaaatinvoking “Input-
file reader” for processing the filegame.tragame.laband game.rewi At this stage neces-
sary data structures for storing the probability matrix gyeovided by “Internal-data stor-
age”, labeling and state rewards, which then become acbés#irough “Runtime settings”.
Once MRMC is started it produces the following output:

| Markov Reward Model Checker |

| MRMC version 1.3 |
| Copyright (C) The University of Twente, 2004-2007. |

| Copyright (C) RWTH-Aachen, 2006-2008. |

| Authors: |
| Ivan S. Zapreev (since 2004), Christina Jansen (since 2007), |
| David N. Jansen (since 2007), E. Moritz Hahn (since 2007), |

| Sven Johr (2006-2007), Tim Kemna (2005-2006), |

| Maneesh Khattri (2004-2005) |

| MRMC is distributed under the GPL conditions |

| (GPL stands for GNU General Public License) |

| The product comes with ABSOLUTELY NO WARRANTY. |
| This is a free software, and you are welcome to redistribute it. |

Logic = PRCTL

Loading the 'simple_dmrm_dice.tra’ file, please wait.
States=5, Transitions=8

Loading the ’'simple_dmrm_dice.lab’ file, please wait.
Loading the 'simple_dmrm_dice.rew’ file, please wait.
The Occupied Space is 992 Bytes.

Type ’help’ to get help.

>>

where, first the MRMC logo is printed, then some general mdron about the accepted

model and finally the MRMC shell invitation sigr. After that the tool is up and running,
ready to accept user commands.

Once started, MRMC provides a shell-like environment¢mmand promptwhere the
user can specify the tool run-time options, such as a user@icalgorithms, and the prop-
erties that have to be verified. For every verification probthe tool outputs a set of states

that satisfy the given property and, if applicable, thedisprobabilities. Note that the com-
plete list of MRMC command-line options and command-prosgtmands can be found
in Chapter6.

game.tra game.lab game.rew
STATES 5 #DECLARATION | 21
TRANSITIONS 8| loss goal 32
1204 #END 43
1303 2 loss 54
140.2 5 goal

1501

211.0

311.0

411.0

511.0

Table 2.1: The dice game: MRMC input files

Example 3 Extending Exampl@, we can answer to the model checking problem of Exam-
ple 1, by executing the following command in the MRMC command jprom

>>P{>0.5}[!loss U[0,199][5,50] goal]

$RESULT: (0.0647999, 0.0000000, 0.0959998, 0.1199998, 0. 1199997)
$STATE: { }

The Total Elapsed Model-Checking Time is 45 milli sec(s).

>>

By doing so we invoke the “Command-prompt interpreter” comgnt, cf. Figure2.1, that

processes all commands of the MRMC shell. This componeng} tRuntime settings” de-
termines which model-checking engine is needed, in thesitass"PRCTL model checking”,
and then invokes it. As a result, we get two outputs: a prdigbectorSRESULT and a set
of statesBSTATE The former corresponds to the list of probabilities to sitithe formula
~loss U 604l when starting in the first, second, etc. states. The latteristthe set of

[5,50]
states in which the formulB..q 5 (ﬁloss Ulrso). goal) is satisfied.

Since, when playing the dice game, we always start in dtate. we first toss the dice,
from the vectoSRESULTwe can see that the probability to win the game withid dice
tosses is judd.0647999 and thus indeed is not in the se$STATE

Since we already have a good idea of how MRMC works, we proeetidconcrete in-
formation on the tool installation process. The dice exanfim above will be referenced
in the upcoming chapters to illustrate the tool functiotyal

3 Building MRMC

This chapter is devoted to the installing process of MRMC alidelated components.
MRMC can be freely downloaded from:

http://www.mrmc-tool.org/

Further, we first explain how to build MRMC on the supportedtfgrms. After that we
proceed with a section on getting and configuring the optiMRMC test suite, which is
useful for internal, functional and performance testingheftool.

3.1 Building MRMC from source code

To compile MRMC from sources GNU Make as well as GCC is needelditionally, com-
pilation under Windows requires Cygwin.

e http://gcc.gnu.org/

e http://www.cygwin.com/

3.1.1 Getting & Installing GSL

Since MRMC v1.3, the tool requires the GNU Scientific LibrdfySL), a collection of
numerical routines for scientific computing. The currensi@n of GSL is available at:

ftp://ftp.gnu.org/pub/gnu/gsl

GSL follows the standard GNU installation procedure. Bhmeftalling instructions can be
found here, for further information on this topic ségfSFO7h

Note that, in order to install GSL on Windows you are first riegg to install Cygwin and
then to perform GSL installation procedure using the Cygshell. For more details see
Section3.1.3

First, unpack the GSL distribution file into the location @iy choice, enter that directory
and prepare the Makefiles by using tenfigurecommand. Afterwords rumaketo compile
andmake instalto install the library. On most systems the latter will reguioot privileges.

$ tar -xf gsl-1.9.tar.gz
$ cd gsl-1.9

$./configure

$ make

$ sudo make install

Further we assume that GSL is properly installed on youesyst

http://www.mrmc-tool.org/
http://gcc.gnu.org/
http://www.cygwin.com/
ftp://ftp.gnu.org/pub/gnu/gsl

3.1.2 Linux

To build MRMC on Linux unpack the distribution into the lomat of your choice. We define
MRMGHOMBDIR to be the absolute name of the MRMC distribution folder. ARMRMC
is unpacked, enter this directory and make all

$ unzip mrmc_src_v1.3.zip
$ cd MRMC_HOME_DIR
$ make all

After that you will find the MRMC executable in the fold8IRMGHOMEDIR/bin/
In order to clean up distribution, i.e. to remove all objelgdiand pre-compiled binaries
runmake clean

3.1.3 Windows
To build MRMC on Windows first download and install Cygwin

http://www.cygwin.com

Make sure that 'gcc’, 'make’, 'yacc’ ('bison’) and 'lex’ (‘#x’) modules are included. Ensure
that the absolute name of the MRMC distribution folder doatscontain spaces.

In the next step install the GNU Scientific Library (GSL) asch#bed in Sectio.1.1and
then proceed with the installation steps specified in Se&ib.2 Ensure that all commands
are executed within the Cygwin shell.

3.1.4 Mac OS X
To build MRMC on Mac OS use the instructions of Sectibh.2

3.2 Getting & Installing Test Suite

The test-suite allows to perform internal, functional aedprmance testing of MRMC. It is
not distributed with the MRMC sources, but it can be freelywdimaded from:

http://www.mrmc-tool.org/

After downloading theMRM@est v1.3.zip file, unpack it in the MRMC folder. As
a result a directoryMRMGHOMEDIR/MRMCtest v1.3/ will be created. Further, for
brevity, we assume that you rename it iIMBRMCHOMEDIR/test/

3.2.1 Configuring tests
The main configuration parameters of the MRMC test-suitebeaset in the

MRMCHOMEDIR/test/settings.cfg

configuration script. These parameters are subdividedwuaagroups:

10

http://www.cygwin.com
http://www.mrmc-tool.org/

General settings
¢ MRMCGHOMBDIR - The absolute name of the MRMC distribution directory.

e MRMGEThe location of the MRMC binary. This setting does not neeld changed if
MRMCHOMBDIR is set correctly. Note that, when running MRMC on Windows, th
binary name should be settarmc.exe .

e VALGRINGHOME The absolute path to thealgrind executable ABFH"08].
It is only required if tests are run under thealgrind option. Note that in this
case MRMC should be first recompiled with #0 -ggdb -g options, which are
available iInMRMGHOMEDIR/makefile.def

e VALGRINDLOGFILES _DIR - The absolute name of the folder for storilog filed
produced byalgrind

e EXTRAVALGRINDPARAM Extra options fowvalgrind
Performance-test settings The performance part of the test suite was developed for
Linux platform only. It is not proven to work under WindowsMac OS X.

e PRISM- The absolute path of the PRISMIIP0Z command line executable. This
setting is required for generating performance-test nsodel

e TMPDIR- This setting should point to a local directory, which wi# bsed for storing
generated models.

e YMER The absolute path of the Ymerdu05(command line executadle
e VASTAJAR - The absolute path of the VESTAA04] jar file?.

e NUMBEROF PERFORMANGCREPETITIONS - The number of times every perfor-
mance test is going to be repeated. If set to zero, no “elapsed statistics is col-
lected. At the same time the functional testing and the mgrueage statistics are
collected only for thdumping sub suite.

e MILLISECONDS- The time units of the “elapsed-time” plots.
e KILOBYTES- The data units of the “memory-usage” plots.
e CONFUNIT The data units of the “confidence” pléts

e PERFORMANCEEST.TIMEOUTSECS- The timeout (in seconds) for each perfor-
mance test invocation.

For more information on the MRMC test suite, we refer to Ceaptind also to the test-suite
manuaMRMGHOMBDIR/test/TS _Manual.pdf

2This setting is required only for thremulation sub suite.

11

4 MRMC'’s Input Files

As already mentioned in Chapt2MRMC expects five input files: ara — file describing
the probability or rate matrix of a DTMC, CTMC or an MRM,.lab - file indicating the
state labeling with atomic propositions,a@mdpi - file describing the rate matrix and the
transition labeling of a CTMDPI, aew - file specifying the state-reward structure, and a
rewi — file specifying the impulse-reward structure. For all sapgd model types either
the.tra orthe.ctmdpi and.lab files are compulsory, whereagw and.rewi files
are used only for specifying reward models.

Here we would like to give a formal definition of the structtine input files should meet.
Please note, tha¥lRMC does not check if the input is in a proper format and thus
may show malicious behavior in case of a wrong inputFor examples of MRMC's input
files see Table€2.1 of Chapter2. Additionally, examples for CTMDPIs can be found in
AppendixA.

4.1 The .tra File Format

The.tra file contains the rate (probability) matrix:

File structure:

Tra_File = Header Body
Header = 'STATES’ <number of states> \n
"TRANSITIONS’ <number of transitions> \n
<from state> <to state> <rate/probability> \n
Body
| <from state> <to state> <rate/probability> \n

Body

The header defines the number of states and transitions gystem. The body contains
transitions in the format:

<from state> <to state> <rate/probability>

Note that, “from state” and “to state” should be given as rdtmumbers, the rates/probabil-
ities as real numbers. State indexes start witnd transitions must be given in ascending
order of first row and then column index.

4.2 The .lab File Format

The.lab file contains the labeling of states with atomic proposgion

12

File structure:

Lab_File = Declaration Body
Declaration = '#DECLARATION’ \n
Atomic_Prop_List \n
'#END’ \n
Body = <state> Atomic_Prop_List \n Body
| <state> Atomic_Prop_List \n
Atomic_Prop_List = <atomic proposition> Atomic_Prop_Lis t

| <atomic proposition>

In the declaration section all needed atomic propositioastrbe defined. We allow quite
complicated atomic propositions, namely the ones thatdifdéHowing regular expression:

<atomic proposition> = {let{alnum}*
let = [a-zA-Z]
alnum = [La-zA-Z0-9<>_"*+-=]

The propositions are assigned to states in the followingmean

<state> Atomic_Prop_List

4.3 The .ctmdpi File Format

The.ctmdpi file contains the rate matrix and additionally the transitimbeling to distin-
guish between different non-deterministic choices. Theef@irmat for the transition descrip-
tions are given below.

File structure:

Ctmdpi_File
Header

Header Body_Int_Nondet
'STATES’ <number of states> \n
'#DECLARATION’ \n

Atomic_Prop_List \n
'#END’ \n

<from state> <label> \n
* <to state> <rate> \n
{ * <to state> <rate> } \n
Body_Int_Nondet

| <from state> <label> \n
* <to state> <rate> \n
{ * <to state> <rate> } \n

Body_Int_Nondet

The header defines the number of states the MDP contains basial needed transition
labels, which are used to label the non-deterministic dwtss

The body contains the transitions and transition labelgreshfrom state” is the state the
the selection starts from and “label” is the external chdiizg was made. After this line, a
number of lines follow, which list the states “to state” orma@o to with rate “rate”.

13

Note that, “from state” and “to state” should be given as redtmumbers, the rates/proba-
bilities as real numbers. State indexes start witimd transitions must be given in ascending
order of first row and then column index.

4.4 The .rew File Format

The.rew file contains the state-reward definitions.

File structure:

Rew_File = Body
Body = <state> <reward> \n Body
| <state> <reward> \n
Note that, only natural reward values are allowed, theeshory rational rewards must (and
can) be transferred into natural numbers first.
4.5 The .rewi File Format

The.rewi file contains the impulse-reward definitions.

File structure:

Rewi_File = Header Body
Header = "TRANSITIONS’ <number of transitions> \n
Body = <from state> <to state> <reward> \n Body

| <from state> <to state> <reward> \n

In the header the number of transitions is given, the bodyatoes reward to transition
assignments in the format:

<from state> <to state> <reward>

Note that, “from state” and “to state” should be given as ratanumbers. Furthermore, like
for the.rew file only natural reward values are allowed.

4.6 Getting MRMC models

Specifying a whole model in the formats explained above isveoy intuitive especially
for large systems. Therefore in this section we introduae tvwols — namely PRISM and
PEPA — that offer a clearly defined language for designingetsodoth of them feature the
automatic generation of MRMC input files.

14

4.6.1 PRISM

PRISM [KNP08H stands for Probabilistic Symbolic Model Checker and is\gadeveloped
at the University of Birmingham, United Kingdom, for the &rsas of probabilistic systems.

MRMC models can be generated from PRISM models starting thartool version 3.0.
PRISM can be downloaded from:

http://www.prismmodelchecker.org/download.php

The model-generation options of PRISM are listed here andiso be obtained by running
prism -help

e —exportmrmc - Use MRMC format when exporting matrices/oestabels.

e —exportlabels<file> - Export the list of labels and satisfying states tdad -file.
e —exporttrans<file> - Export the transition matrix to ara -file.

e —exportstaterewardsfile> - Export the state rewards vector toraw -file.

e —exporttransrewardsfile> - Export the transition rewards matrix tar@wi -file.

Example 4 Consider Examplé@ of Chapter2. The DMRM model given in Figur2.2 can
be specified as the following PRISM model:

File: game.pm ------------ s
probabilistic

module Dice

dice_state : [1..5] init 1;

[] dice_state=1 -> 0.4:(dice_state’=2) + 0.3:(dice_state '=3)
+ 0.2:(dice_state’=4) + 0.1:(dice_state’'=5);

[] dice_state=2 -> 1.0:(dice_state’=1);

[] dice_state=3 -> 1.0:(dice_state’'=1);

[] dice_state=4 -> 1.0:(dice_state'=1);

[] dice_state=5 -> 1.0:(dice_state’'=1);

endmodule

rewards
dice_state=2 :
dice_state=3 :
dice_state=4 :
dice_state=5 :
endrewards

E N

15

http://www.prismmodelchecker.org/download.php

File: game.pctl —---—--——-- e

label "loss" = dice_state=2;
label "goal" = dice_state=5;

In the filegame.pm the DMRM model is specified, whereas thedéene.pctl contains
only the state labellings.
To generate the MRMC model with PRISM, run the following canun

$ prism game.pm game.pctl -exportmrmc -exportlabels
game.lab -exporttrans game.tra -exportstaterewards game .rew

which produces thetra , .lab and.rew input files shown in Tabl@.1 of Chapter2.
These files can be immediately consumed by MRMC.

For more information on generating MRMC models using PRI®® [ENPO8H.

4.6.2 Performance Evaluation Process Algebra (PEPA)

Performance Evaluation Process Algebra (PERA)9E] is an algebraic process-oriented
language for modeling concurrent systems. The procesbralge being mainly developed
in Laboratory for Foundations of Computer Science, Unigisf Edinburgh, United King-
dom. Performance of a PEPA model can be evaluated by dem@vidgnalyzing the under-
lying CTMC. PEPA modelers are provided with the PEPA Worldieji G0,

http://www.dcs.ed.ac.uk/pepa/tools/

an Eclipse-platformfou07 application for managing the models. One of the PEPA Work-
bench features is an Eclipse wizard for exporting PEPA nwoohéb the MRMC input-file
formats.

16

http://www.dcs.ed.ac.uk/pepa/tools/

5 Running MRMC

In order to start MRMC open a shell environment such as cslasi bn Linux and Mac OS
X, or Dos command prompt on Microsoft Windows and switcVieMGIOMEDIR.

5.1 Command line options
Starting MRMC without parameters

e for Linux/Max OS: $./bin/mrmc

e for Windows: $./bin/mrmc.exe

will yield the following output:

ERROR: The <model> parameter is undefined.

Usage: mrmc <model> <options> <.tra file> <.ctmdpi file> <. lab file> <.rew file>
<.rewi file>
<model> - could be one of {ctmc, dtmc, dmrm, cmrm, ctmdpi}.
<options> - could be one of {-ilump, -flump}, optional.
<.tra file> - is the file with the matrix of transitions
(for DMRM/CMRM, DTMC/CTMC).
<.ctmdpi file> - is the file with the transition matrix and tr ansition labels
(for CTMDPI).
<.lab file> - contains labeling.
<.rew file> - contains state rewards (for DMRM/CMRM).
<.rewi file> - contains impulse rewards (for CMRM, optional).
Note: In the '.tra’ and '.ctmdpi’ file transitions should be ordered by rows and columns!

The model -parameter should be set to one of the supported models, W&id/1C,
DTMC, CMRM, DMRM and CTMDPI. Remember that the latter modehi CTMDP with
internal non-determinism, see Appendix

Options-ilump and-flump enable formula- independent and dependent lumping cor-
respondingly. For more information on lumping, please aerseading KKZJO7].

We expect users to provide MRMC with the input files that méetformats specified
in Chapter4, for illustration see Exampl& on page6. Note that, the order of input files,
options and other parameters does not have to be strict.

A complete list of all MRMC runtime commands, sorted by thefiliation to different
model checking aspects, can be found in the next chapter.

17

6 MRMC run-time Commands

Once started, MRMC provides a shell-like environment¢mmand promptvhere the user
can use the tool run-time commands to set for example the fusert@in algorithms, or
specify the properties that have to be verified. Further welisi and discuss MRMC'’s
command-prompt commands sorted by their affiliation to ttierént aspects of model
checking.

6.1 Basic Commands

6.1.1 help

When typinghelp in MRMC’s command prompt, information on general commargls i
displayed:

quit - exit the program.

help HT - display a help info on a given topic.

print - print run-time settings.

print tree - print the formula tree with the results and suppl ementary
information.

$RESULTI[N] - access the computed results of U, X, L, S, E, C, Y o perators
by a state index.

$STATE[N] - access the state-formula satisfiability set by a state
index.

set * - Where * is one of the following:

print L - Turn on/off most of the resulting output, see

'SRESULTII]" and '$STATE[I] commands.
simulation L - Turn on/off the simulation engine.
Here:

HT is one of {logic, simulation, rewards, common}.
L is one of {on, off}.
N is a natural number.

First we are going to explain the basic commands listed is liglp output, the more
involved ones are covered in the subsequent sections.

quit - Exits the program.

help HT - For some terms a specialized help is available. See theipkist provided
for help logic , help simulation , help rewards andhelp common below.

18

print tree — Prints the tree of the last model-checked formula withraénimediate
results.

Note: The next two commands provide different output in case afgithe discrete event
simulation engine. For more details we refer to Secion

SRESULT[N] - Allows to access the probability of satisfying the modetcked
formula in stateN.

$STATE[N] - Displays whether statésatisfies the model-checked formula, i. . for a
state fulfilling the formula the result iIERUE otherwiseFALSE

6.1.2 help logic

The commanthelp logic prints the formal syntax, given lBxtended Backus-Naur Form
(EBNF), of the logic formulae accepted by MRMC. The output dependthe value of the
logic parameter with which MRMC was invoked. Figurés through6.4 show outputs
for all available logics. These logics allow to specify mbdeecking properties, as itis done
in Example3 on page8. Additional information on the logic semantics and exarafdee
provided in Chapter.

6.1.3 help simulation

Thehelp simulation command provides the user with all options related to MRMC'’s
simulation engine:

set * - Where * is one of the following:
sim_type ST - Sets the simulation type, \ie{} either
do simulation for all initial states
or just one.
initial_state N - Sets the initial state for the simulation

type ST == one.
sim_method_steady MS - Sets the simulation mode for the
steady-state (long-run) operator.

gen_conf R - The confidence level for simulation.
indiff_width R - The indifference-region width.
max_sample_size N - The maximum sample size.
min_sample_size N - The minimum sample size.
sample_size_step N - The sample-size increase step.

sim_method_disc RNG - The random-number generator for a
discrete distribution.
sim_method_exp RNG - The random-number generator for an
exponential distribution
(time-interval until, CSL).
For the simulation of unbounded until and the pure simulatio n of
steady-state (long-run) operator:
max_sim_depth N - The maximum simulation depth.
min_sim_depth N - The minimum simulation depth.
sim_depth_step N - The simulation-depth increase step.
Here:

19

CONST = ff | tt CONST = ff | tt

P{ OP R } PFL]
L{ OP R }[SFL]

P{ OP R }[PFL]
E[R, Rl [SFL]

SFL = CONST SFL = CONST
| LABEL LABEL
| | SFL | SFL
| SFL && SFL SFL && SFL
| SFL || SFL SFL || SFL
| (SFL) (SFL)
I

P{ OP R }[PFL] P{ OP R }[PFL]
S{ OP R }[SFL] S{ OP R }[SFL]
PFL = X SFL PFL = X SFL
| SFL U SFL SFL U SFL
| X R, R] SFL X[R, R] SFL
| SFL U[R, R] SFL SFL U[R, R] SFL
X [R, R][R, R] SFL
SFL U[R, R][R, R]
SFL

PFL = X SFL E [N][R, Rl [SFL]
| SFL U SFL C IN][R, R] [SFL]
| SFL U[N, N] SFL Y N[R, R] [SFL]

PFL = X SFL
| SFL U SFL
| SFL Ul N, N][R, R]
SFL
Figure 6.1: PCTL formulae Figure 6.2: PRCTL formulae

CONST = ff | tt CONST = ff | tt

SFL = CONST SFL = CONST
| LABEL | LABEL
| 1 SFL | 1 SFL
| SFL && SFL | SFL && SFL
| SFL || SFL | SFL || SFL
| (SFL) | (SFL)

I |
I |

Figure 6.3: CSL formulae Figure 6.4: CSRL formulae

20

RNG is one of {app_crypt, ciardo, prism, ymer, gsl_ranlux,
gsl_Ifg, gsl_taus}.

ST is one of {one, all}.

MS is one of {pure, hybrid}.

R is a real value.

N is a natural number.

For more information on the simulation options read Secfiéh3 For details on the avail-
ableRandom Number Generators (RNG@sad Chapte8.

6.1.4 help rewards

The commandhelp rewards vyields the following output:

set * - Where * is one of the following:
method_until_rewards MU - Method for time-reward-bounded until
formula.
w R - The probability threshold for

uniformization
Qureshi-Sanders.
d R - The discretization factor for
discretization Tijms-Veldman.
Here:

MU is one of { uniformization_sericola,
uniformization_qureshi_sanders,
discretization_tijms_veldman }.

R is a real value.

For more information on reward options listed above, werref&Sectiont.2.4

6.1.5 help common

Thehelp common command provides the user with information concerningaosj re-
lated to all model-checking procedures and numerical ntsthBor detailed information on
these options, see Sectiofi®.1and6.2.2

set * - Where * is one of the following:

ssd L - Turn on/off the steady-state detection for time
bounded until (CTMC model).

error_bound R - Error Bound for all iterative methods.

max_iter N - Number of Max Iterations for all iterative
methods.

overflow R - Overflow for the Fox-Glynn algorithm.

underflow R - Underflow for the Fox-Glynn algorithm.

method_path M - Method for path formulas.

method_steady M - Method for steady state formulas.
method_bscc MB - Method for BSCC search.
Here:
L is one of {on, off}.
R is a real value.
M is one of {gauss_jacobi, gauss_seidel}.
MB is one of {recursive, non_recursive}.

21

6.1.6 print

Theprint command displays the current status of all relevant rum-gettings. A sample
output may look as follows:

---General settings:

Logic = PCTL
Formula ind. lumping = OFF
Formula dep. lumping = OFF
M. C. simulation = OFF
Method Path = Gauss-Seidel
Method Steady = Gauss-Seidel
Method BSCC = Recursive
Results printing = ON
---Numerical methods:
-lterative solvers:
Error Bound = 1.000000e-06
Max lIterations = 1000000

A complete list of all runtime options and their correspamtito theprint command
output can be found in Sectidh2 Below we describe the parameters listed in the output
above:

e General settings

— Logic - Corresponds to thiegic parameter MRMC was invoked with (cf.

Chapterb).

— Formula ind. lumping — Is related to the optioAlump MRMC was
invoked with (cf. Chapteb).

— Formula dep. lumping — Is related to the optiofflump MRMC was
invoked with (cf. Chapteb).

— M. C. simulation — Corresponds to the commaselt simulation L
(cf. Section6.2.3. With simulation enabled, the output of thent command
Is extended.

— Method Path - Corresponds to the commasdt method _path M (cf.
Section6.2.7).

— Method Steady - Corresponds to the commasdt method _steady M
(cf. Section6.2.7).

— Method BSCC — Corresponds to the commasdt method _bscc MB (cf.
Section6.2.7).

— Results printing — Reports whether model checking results are printed.
In order to manage this option, uset print L (cf. Section6.2.1).

e Numerical methods

— Error Bound - Corresponds to the commasédt error _bound R (cf.
Section6.2.2.

22

— Max lIterations — Corresponds to the commasdt max _iter N (cf.
Section6.2.9.

Note that, depending on specific run-time settings, thewiwptheprint command may
be extended with additional information. For example, wtiensimulation engine is turned
on, the user is provided with information about its paramsess well.

6.2 Advanced Commands

In this section, we list the remaining MRMC commands thaivalto influence its run-time
behavior. Every command will be given in the following forima

<command name (relatedprint output) — short description.

6.2.1 Common

Let us consider the MRMC commands responsible for manadiaggéeneral behavior of
the tool. When displaying the current settings with gftent command, all commands
described here can be found in the secti@neral settings . Below we haveL €
{on, off }andMe {gauss _jacobi, gauss _seidel }.

set print L (Results printing) — Turns on/off printing of model-checking results
that follows the formula verification procedure.

set ssd L (Steady-state detection) — Turns on/off the steady-state detection for
the time-bounded until operator (CTMC/CMRM).

set method _path M (Method Path) — Sets the iterative method for solving a
system of linear equations when computing reachabilitypabdities for model checking of
an unbounded-until formula (DTMC/DMRM and CTMC/CMRM).

set method _steady M (Method Steady) — Sets the iterative method for solving
a system of linear equations when computing steady-stateapilities of BSCCS The lat-
ter happens when model checking the steady-state, longrrdrunbounded-until formulas
(DTMC/DMRM and CTMC/CMRM).

set method _bscc MB (Method BSCC) — Sets the method used when searching
for bottom strongly connected components. Helfgédefines the BSCCs search implemen-
tation based on:

e recursive — Recursive functions.

e non recursive — Cycle iterations.

Bottom Strongly Connected Components

23

Generally, theecursive method is faster, but can run into a segmentation fault chuse
by an insufficient stack size (it is likely to happen for largedels). Thenon _recursive
method does not use recursive function calls, and thus swbelstack exhaustion.

6.2.2 Numerical Methods

In this section we list commands that allow to manage the migadeengine of MRMC. The
list of corresponding parameters can be found inNlbenerical Methods section of the
print command output.

set error _bound R (iterative solvers/Error Bound) — Sets the error bound for
all iterative methods.

set max _iter N (Iterative solvers/Max Iterations) — Sets the maximum number
of iterations for all iterative methods.

set overflow R (Fox-Glynn algorithm/Overflow) — Sets the overflow threshold
for the Fox-Glynn algorithmA{G84.

set underflow R (Fox-Glynn algorithm/Underflow) — — Sets the underflow thresh-
old for the Fox-Glynn algorithm.

6.2.3 Simulation

In this section we list commands related to MRMC'’s discetent simulation engine. At
present simulation can be used when model checking unbdeunatd, time-bounded until,

and steady-state operators on CTMC/CMRM models. We do mpgatinested simulation.
Therefore, given a formula we only apply simulation to thepi@priate) sub formulas that
have the closest location to the formula-tree root. Thefeululas that are located below
are verified using numerical methods.

Example 5 Consider the formul®,, (I U ®) A S.,, (Ps,, (¥’ U @')) with the corre-
sponding formula tree depicted in Figuses. The formula is a conjunction of the unbounded-
until formulaP—,, (I U ®) and the steady-state formuta,, (P~,, (¥’ U @')). The latter
one has an unbounded-until sub formula. In the given simalRMC applies numeri-
cal methods to verify sub formul.,, (¥’ U @’). Then the unbounded-until sub formula
P, (¥ U @) and steady-state sub formufa,, (P-,, (¥’ U ®')) are model checked using
simulations.

With simulation on, thgrint command output is extended with parameters of the sim-
ulation engine, cf. Examplé of Chapter8. These options are displayed in thMonte

Carlo Simulation section. Below, we assume thHat {on, off }andNe N.
set simulation L (M. C. Simulation) — Turns MRMC’s simulation engine
on/off. The status of simulation engine is reported underGeneral settings sub

point of theprint command output.

24

Figure 6.5: Formula tre®—,, (T U @) A S.,, (Psp, (¥ U @'))

set sim _type ST (Simulation type) — Sets the simulation typ8T € {one,
all }. Unlike in numerical model checking, where verification @é for all initial sates at
once, in model checking via simulation we can either do \eifon for one initial state or
all initial states. The former can be set by using ské initial _state N command,
described below.

set initial _state N (Sim. initial state) — Sets the state for which the validity
of the formula is going to be verified.

set sim _method _steady MS (Sim. steady state) — Sets the simulation mode
for the steady-state/long-run operator. H&&is one of

e pure — Model checking only by discrete simulation.

e hybrid — Probabilities of reaching BSCCs are computed numerically

set gen _conf R (Confidence level) — Sets the confidence level (probability) with
which we can trust the model-checking results. H&e, [0.25, 1.0]. Note that, this confi-
dence level is guaranteed only under a specific conditiangrexplained in Chaptes.

set indiff _width R (ndiff. reg. width) — Sets the width of the indifference
region, i. e. the maximum width of the confidence intervaé thill be considered. For more
details see Chapté&

set max _sample size N (Maxsample size) — Sets the maximum sample size,
i. e. the maximum number of independent traces to be corgider

set min _sample _size N (Minsample size) — Sets the minimum sample size,
i. e. the minimum number of independent traces to be corsider

set sample _size _step N (Sample-size step) — Sets the increment for the
sample-size, i.e. the number by which the number of obgensin the samples will be
increased, for sequential confidence intervals.

25

set sim _method _disc RNG (RNG discrete dist.) — Sets the method of gener-
ating values for discrete random variables (cf. Chap)erhis method is used for simulating
state transitions of embedded DTMCs. The Random Numberr@em&NGcan be one of
the following:

e app _crypt — Combined linear congruential generator.

ciardo - Improved linear congruential generator.

prism — Linear congruential generator, similar to the RNG usedRiiSr/.

ymer — Mersenne Twister, similar to the RNG used in Ymer.

gsl _ranlux - Ranlux generator, GSL Library.

gsl Ifg - Lagged Fibonacci generator, GSL Library.

gsl _taus — Tausworthe generator, GSL Library.

set sim _method _exp RNG (RNG exponential dist) — Sets the RNG for gen-
erating exponentially distributed random variables. Thethod is used for simulating ex-
ponentially distributed state-exit times. HE8IG= { app _crypt, ciardo, prism,

ymer, gsl _ranlux, gsl _Ifg, gsl _taus }.

Note: The following commands are used for managing options spdoifthe unbounded-
until operator.

set max _sim _depth N (Max simulation depth) — Sets the max. simulation
depth, i. e. the maximum number of steps in every simulatéul pa

set min _sim _depth N (Min simulation depth) — Sets the min. simulation
depth, i. e. the minimum number of steps in every simulateéd.pa

set sim _depth _step N (Simulation-depth step) — Sets the increment for the
simulation-depth, i. e. the number of steps by which the &tran depth will be increased.

6.2.4 Rewards

set method _until _rewards MU (Method Until Rewards) — Defines the
method, that will be used for CSRL model checking of time- aegard-bounded until
formulae. HereMUis one of:

e uniformization _qureshi _sanders - Uniformization Qureshi-Sander99¢
e discretization tijms _veldman - Discretization Tijms-Veldmani[\V00]
e uniformization _sericola - Not supported

26

set w R (Probability threshold) — Sets the path probability bound for Qureshi &
Sanders uniformization algorithm, i. e. only paths withhpptobability greater or equal to
the bound are considered significant relative to the salutio

set d R (Discretization factor) — Sets the discretization factor for time interval and
accumulated rewards in the discretization algorithm bgn$ig Veldman.

27

[/ Property Specification with
Temporal Logics

Model checking is the process of checking whether a giveneinsatisfies a given logical
formula. As MRMC is a probabilistic model checker, it supgahe common logics for
specification of probabilistic properties, namely PCTL,(PAR, CSL and CSRL. In this
chapter all the formulae accepted by MRMC will be introduoedhe basis of EBNF. For a
property specification example, see Exantpten page8 or Examples’ and8 of Section8.

PCTL and PRCTL as well as CSL and CSRL (cf. Sectioh.? share a set of common
formulae. Every logic only extends the set of these formule that in most cases MRMC
performs global model checking, i.e. properties are verifreevery model state and the
states satisfying the given formula are reported. The eiare® model-checking by discrete
event simulation, there it is possible to check the validityhe formula in just one given
state.

7.1 Common-logic subset
The common formulae are the following:

Common Semantics:

CONST = ff | tt
SFL = CONST

| LABEL

| | SFL

| SFL && SFL

| SFL || SFL

| (SFL)
| P{ OP R }[PFL]
PFL = X SFL

| SFL U SFL

We distinguish between two types of formulae: state and fmathulae. A state formula
SFL is interpreted over the states of the considered systemhamefore results in a set of
states satisfied by the formula. A path form#E&L is interpreted over system paths and
thus for every given initial state results in a set of pattestisg in this state, that satisfy the
formula.

28

7.1.1 State formulae (SFL)

tt (True) —Is a constant satisfied in every state of a model.
ff (False) —Is a constant satisfied in none of model states.

LABEL (Atomic proposition) — Is satisfied in the states assigned with the given atomic
proposition (label).

ISFL (Negation) —Is satisfied in states, which do not fulfBFL.
SFL; && SFLy (Conjunction) —Is satisfied in states fulfilling botBFL; andSFL,.
SFL; || SFL 5 (Disjunction) - Is satisfied in states fulfillin§FL; or SFL,.

P{ OP R[PFL] (Probability measure) — For every state, it asserts that the prob-
ability measure of paths starting in the given state andfyaig PFL meets the probability
constraintOP R HereOPe {>, <, <, >} andR € Ry 1.

7.1.2 Path formulae (PFL)

X SFL (Next) — Asserts that on a path, starting in some statbe immediate successor
state ofs satisfies the formul&FL.

SFL; U SFLy (unbounded until) — Asserts that on a path there is a state satisfying
SFL, and all preceding states satiSS{L;.

7.2 PCTL

PCTL [HJ9] is an extension of CTL, which allows for probabilistic quifisation of prop-
erties. PCTL extends the set of common formulae by one state@e path formula.

SFL = ..
| L{ OP R }[SFL]
PFL = ..
| SFL Ul N, N] SFL

L{ OP R}[SFL] (Long-run) — Checks if the long-run probability for being in
states that fulfillSFL meet the probability constrai@P R

SFL; U[0, N] SFL 5 (Time-bounded until) — Asserts thaton a path there is a
state satisfyingsFL,, such that this state is reached wittNrime steps (transitions) and alll
preceding states on the path satiSHL;.

29

7.3 PRCTL

PRCTL [AHKO3] is the rewards extension of PCTL and therefore extends P@iilh.the
following formulae:

SFL = ..
| E[R, R] [SFL]
| EINIl R, R] [SFL]
| CINIl R, R] [SFL]
| YINIl R, R] [SFL]
PFL =

| SFL U[N, N][R, R] SFL

E[Ry, Ry] [SFL] —Assertsthatthe long-run expected reward rate per time-
unit for SFL states lies within the interv@R ;, R] .

EIN| R 1, Ro] [SFL] - Assertsthatthe expected reward ratSki-states
up to n transitions reached at tNeth epoch lies within the intervgl R, R] .

CINl R 1, Ro] [SFL] -Assertsthatthe instantaneous rewar8Hit states
at theN-th epoch lies within the intervgl R, R] .

Y[N]l R 1, Ro] [SFL] - Asserts that the expected accumulated reward rate
in SFL states until the\-th transition lies within the intervdl R4, Ry] .

SFL; U Ni, No J] R 1, Ro] SFLy (Time- & reward-interval until) — —
Asserts thaSFL, will be satisfied withinj € [N;, N,] steps, that all preceding states
satisfySFL,, and that the accumulated reward until reaching3ke,-state lies in the inter-
Val[R, R»] .

7.4 CSL

CSL [BHHKO3] extends PCTL, but it works with the continuous time domaktere the
long-run operatol.{ OP R} is substituted with the steady-state opere®$r OP R }
and the time-bounded next operator is added:

SFL = ..

| S{ OP R }[SFL]
PFL = ..

| X[R, R] SFL

S{ OP R}[SFL] (Steady-state) —Is similar to the long-run operator of PCTL,
cf. Section7.2

30

X[Ri, Ry] SFL (Time-bounded next) — Asserts that a transition is made to a
SFL state at some time pointe [R{, Ry].

7.5 CSRL
CSRL [CKKPO0E extends CSL with the following formulae:

PFL = ..
| X[R, RJ[R, R] SFL
| SFLU R, R][R, R] SFL

X[Ry, R{"][R 2, Ry’] SFL (Time- & reward-interval next) — Asserts
the a transition can be made t&&L state at some time pointce [R, R;"] such that
the accumulated reward until time potrites in the interval R, Ry’] .

SFL; U 0, R;][0, R o] SFL 5 (Time-& reward-bounded until) —As-
serts thaSFL, is satisfied at some time instane [0, R ;] such that the accumulated
reward untilt lies in the interval 0, R ,], and that at all preceding time instaif85L,
holds.

31

8 Model Checking by Discrete Event
Simulations

Since MRMC v1.3, we support model-checking by means of discevent simulation. Be-
ing statistical in nature, such an approach cannot guardmae the verification result i)0%
correct. Yet, it allows to bound the probability of genemgtan incorrect answer to a verifica-
tion problem, and, unlike the numerical approac¢hesdel checking using simulations does
not suffer from the state-space explosion. Note that, irctiveent implementation MRMC
operates on the pre-generated Markov chain which is cosiplietaded into the computer’s
RAM?, therefore the state-space explosion is not eliminated.

Techniques for model checking CSL (PCTL) properties usingukations have already
been developed. For example iig07], later extended by\{S04, an algorithm based
on Monte Carlo simulation and hypothesis testing for nopl@sive stochastic discrete-
event systems is suggested. BVR04], the algorithms of YS0Z are extended to sta-
tistically verify black-box, deployed systems with a paesobserver. Both statistical ap-
proaches YS02, SVAO4] considered a sub-logic of CSL that excludes steady-state a
unbounded-reachability properties. Iiof104], the algorithm is extended to deal with a
subclass of unbounded-reachability problems.Jw/{05] the statistical verification method
of [YS07] is extended to verify unbounded-reachability properté<SL (or PCTL) on
finite-state CTMCs (DTMCs), and SMCs. All these approachesyme an “on-the-fly”
model generation.

Contrary to the above mentioned techniques, our approdwisisd on Monte Carlo sim-
ulation and derivation of confidence intervals. We provitiistical algorithms for model
checking the most interesting CSL operators, such as st&atsy, unbounded-reachability,
and time-interval reachability operators. In addition,ewhmodel checking unbounded-
reachability or steady-state properties of CSL, we do smimuis on the embedded DTMC.
The latter simplifies simulation runs and also lets the apoading techniques for model
checking of PCTL properties on DTMCs to be easily derived. d¥enot consider nested
simulation, see Sectiof.2.3on page?4, and working with finite-state systems, we assume
that we can deduce the structure of the Markov chain. Foattst we can detect Bottom
Strongly Connected Components (BSCCs) of the Markov chior. more details on the
implemented algorithms, as well as comparison to the posWyoexisting simulation tech-
niques, consider reading Parof [Zap04].

Of course, the quality and speed of simulations heavily dép®n the quality and speed
of the underlyingandom number generator (RNGjor this reason seven different RNGs,
which vary in many aspects, are available in MRMC. The onéh thie best performance

INumerical model checking is carried out by symbolic and nicaémethods.
2Random access memory.

32

and reliability results are set to be used by default. Foxéeneled experimental comparison
of available RNG's, consider reading Appendix

The rest of this chapter is organized as follows. In Secfidnwe introduce the main
concepts of using confidence intervals in model checkingthEy in Sectior8.2we discuss
the simulation engine of MRMC on the basis of several example

8.1 Confidence intervals and model checking

Let us consider the verification of the three most importaetrators of CSL: the unbounded-
until operatorP.;, (A U G), the steady-state operat8y,, (G), and the time-interval until
operatoP,.;, (A Uttt) with ¢y, ¢, € Ry andt; < t,. We assume thatie {<, <, >, >

} and, since we do not consider nested simulation, Bo#mdG are treated as sets of states.

In order to verify the formula®.., (A U G), P.q;, (A Ul G) or S, (G), we apply the
following procedure. First, for an initial statg the probabilityp (= Prob(sy, A U G),
= Prob (s, A Utttz G) or = Prob™ (so, G)) is estimated in a form of the i. Second, the
c.i. of p is checked against the probability constraintb, to assess whethey satisfies the
given formula or not.

Leaving the task of computing thei. of p out of scope, further we concentrate on the
second step of the outlined approach. There are two impgarasons for that. First, this
procedure is universal for all considered operators. S&cbacause of the probabilistic
nature of thec.i., the procedure should guarantee the correctness of thik vadusome
(predefined) confidence.

Further, we split our discussion into three parts. Firstsiwew how to decide o< b
when it is known thap € [A,;, A,]. Then, we recall the notion of thei. of p and outline
several problems related to the usecof in validation ofp < b. Finally, we show how to
overcome this problems, either by imposing some assungtoby putting constraints on
the width of the used. i.

8.1.1 Simple problem

Let the value ofp be unknown, but let us also know two bounds A, € R-, such that

A, < p < A,. In this setting, assessing whether< b holds can be done based on the
bounds4, and A, in a straightforward manner. Clearly, such an assessnwerd|lfallowed

>, is possible only ib ¢ [4,, A,] and thus the check yields three possible answers: positive
(TRUE), negative FALSE), or “Don’t know” (NN).

8.1.2 Using confidence intervals

For a given confidencé and sample sizé/ € N-,, thec.i. of p can be represented in the

following form:
Prob (A, (i) <F<A ()‘f)) N (8.1)

whereX is a sample obtained via simulations of the given Markov rth&quation 8.1)
indicates that sampled interva{lﬁl (i) , A, (f)} containp in about100- £ % cases. The
latter implies that using the. i. of p, for decidingp < b, brings us two problems:

33

e If b = p then the solution of the model-checking problem is gengrailknown. l.e.,
similar to model checking by means of hypothesis testiftg([6, SVAO4, SVAOT], the
analysis based on tleei. will be inconclusive. Clearly, in this case with probalyilg

we havep, b [Al (i) A (f)] .

e Due to the probabilistic nature of thei., the result of the comparison between the
c.i. and constraints b becomes probabilistic itself. This means that, in orderive g
a correct answer tp > b, it is not enough to check the i. of p against=< b. In
addition, we have to provide a confidence with which the tesfusuch comparison
provides a correct answer to the original problem.

8.1.3 Solving the problems

The first problem is generally unsolvable. Thus we can ondpiaee thatb — p| = ¢ with
d € R.g. Under this assumption, the second problem can be solvedlass.

Let us choosé’ € R., such that’ < § and consider onlg. i. bordersA, (f) A, (2)

such thatA 2 — A i < ¢'. Clearly, using sucle. i. for deciding onp > b will
T (l

guarantee us that in at ledsbo - £ % cases we will be given a correct answer.

In the solution abovey’ is defined using which is unknown. Yet, it is clear that an
incorrectly chosen’ can be recognized by the fact that in repetitive simulatthesombined
percentage of “incorrect” and “Don’t know” answers exced@ds- (1 — &) %.

Note that, producing &-tight c. i. is a matter of computing a sequential confidence inter-
val. In MRMC we implemented a naive procedure where we irsgéhe sample size until
thec.i. becomes narrow enough. We realize that using this impromeedure can cause
the decrease of the confidence levels, although this wadasetreed in our experiments, see
Chapter 7 of Fap0{. The description of a proper sequential. derivation can be found in
[Fis96 CR69.

Let us summarize that for a given confideg@nd a maximune. i. width ¢’ the simulation
engine of MRMC guarantees to provide the correct answeregartbdel-checking problem
if the following conditions hold:

1. [b—p|=6 €Ryy 2. 0' € Rogandd’ < ¢

Note that, in MRMC{' corresponds to the value oidiff. reg. width , man-
ageable by theet indiff ‘width R command, see Sectidh2.3

8.2 Simulation engine

In this section we provide several examples that explainthesgimulation engine of MRMC
can be used.

Example 6 Consider the dice model depicted in Figre on page6. Let us forget about
its rewards and assume that this model is a CTMC. Then if wekenM RMC on this model,
turn the simulation engine on and use frent command, we get the following:

3An incorrectc. i. of p can still result in the correct answerfio< b.

34

$ mrmc ctmc game.lab game.tra
>> set simulation on

>> print

---General settings:

M. C. simulation

= ON
---Monte Carlo simulation:
Simulation type = ALL
Sim. steady state = HYBRID
Confidence level = 9.500000e-01
Indiff. reg. width = 2.000000e-02
Max sample size = 100000
Min sample size = 10000
Sample-size step = 100
RNG discrete dist. = Appl. Crypt.
RNG exponential dist. = GSL Taus
Max simulation depth = 100000
Min simulation depth = 10000
Simulation-depth step = 1000

---Numerical methods:

Here, for brevity, we omitted uninteresting parts of thepotit Notice that, the section called
General settings indicates that the simulation engine is activated, and tbwly ap-
peared sectioiMonte Carlo simulation contains most of the options, manageable
by the commands given in Sectiér2.3 Note that, more options are available in case of
doing simulations for one initial state:

>>set sim_type one

>>print
---General settings:

---Monte Carlo simulation:

Simulation type = ONE
Sim. initial state =1
Above, the simulation mode is changed and the new offllon initial state indi-

cates that the default initial state is

In the following example we are going to consider the mostgirase of model-checking
using the simulation engine:

Example 7 Extending Exampl8, let us be interested in a simple question: Is the probapbilit
to reach thegoal state without visiting théoss state greater thar®.3? The latter can be
expressed as the following CSL formuR; 3 (—loss U goal).

As we would like to check the above formulated question bpsaasimulation, we invoke
MRMC'’s simulation engine by typirggt simulation on . Providing MRMC with the
formula above will cause the tool to run its model checkingcpdure:

>>set simulation on

>>P{> 0.3} [!loss U goal]

$SIMULATED: YES

$MAX_NUM_USED_OBSERV: 101944

$CONFIDENCE: 9.500000e-01

$CI_LEFT_RESULT: (0.1919024, 0.0000000, 0.1893418, 0.19 74192, 1.0000000)
$CI_RIGHT_RESULT: (0.2097583, 0.0000000, 0.2051940, 0.2 114822, 1.0000000)
$YES_STATE: { 5 }

35

$NO_STATE: { 1, 2, 3, 4 }

The Total Elapsed Model-Checking Time is 115 milli sec(s).
>>

As a result, we get four relevant outputs: two probabilitgtees $CI _LEFT_RESULT
and $CI _RIGHT_RESULT as well as the two state se8&ES STATEand $SNOSTATE
The probability vectors correspond to the left and right. borders derived for the first,
second, etc. state of the model. Note that, the trivial pbaliges, i.e.0.0 and 1.0, are most
likely to be computed via graph analysis. T¥ES STATEset contains the states in which
the formula is satisfied. TH®NOSTATE set contains states in which the formula is not
satisfied. If the for a given state the simulation result imclusive, then it does not appear
in any of the sets.

In the output abovesMAXNUMUSEDOBSER\Ndicates the maximum — over all initial
states — number of states that were considered in order teigieathe answer for the given
model-checking problem. More specifically, we count statgiged during the simulation
procedure. Therefore, the same model state is counted ag times as it is visited. On
the other hand, we do not take into account state visits thatioduring the model-graph
analysis or numerical computations (for the case of hybincigation).

The$SCONFIDENCHButput tells us, that the results are correct with ti€% confidence.
In is important to note that in case of nested formulas, wherave to simulate more than
one operator, the confidence levels for sub formulas arevddrirom the overall confidence
level. Their values then can be viewed by usingiia tree command, see Sectiérl

In the following example we are going to explain two impottaases: the output of the
simulation results for one initial state; and an insuffitiemnmber of observations.

Example 8 Extending Examplé&, let us assume that we are only interested in verifying
P.o.3(—loss U goal) in state3. Also, we can be afraid of spending too much time on simu-
lation and thus want to reduce the maximum sample size andation depth. The latter is
important only for model checking the unbounded-until har $teady-state (by pure simula-
tion) operators. Then our interaction with MRMC might loakfallows:

>>set simulation on

>>set sim_type one

>>set initial_state 3

>>set min_sample_size 10

>>set max_sample_size 30

>>set min_sim_depth 10

>>set max_sim_depth 30

>>P{> 0.3} [!loss U goal]
$SIMULATED: YES

$INITIAL STATE: 3
$MAX_NUM_USED_OBSERYV: 308
$CONFIDENCE: 9.500000e-01
$CI_LEFT_RESULT: (0.1154063)
$CI_RIGHT_RESULT: (0.3023792)
$YES_STATE: { }

$NO_STATE: { }
$INDIFF_ERR_STATE: { 3 }
WARNING: Increase max_sample_size for obtaining the conf. int. of the desired width.

The Total Elapsed Model-Checking Time is 0 milli sec(s).

Here, we first set simulation modedoe and then set the initial state to 3¢ Next, we
reduce the minimum and the maximum sample sizes and siomutigpths. After that we
invoke the model checking procedure. In this casectheborder arrays have sizé. This
can be checked by the following:

36

>>$RESULT[1]

$CI_LEFT_RESULT[1] = 0.1154063

$CI_RIGHT_RESULT[1] = 0.3023792

>>$RESULT[3]

$CI_LEFT_RESULT[3] = ??

WARNING: Invalid index 3, required to be in the [1, 1] interva I
$CI_RIGHT_RESULT[3] = ??

WARNING: Invalid index 3, required to be in the [1, 1] interva I

Here, unlike in the previous example, the sBY&ES STATEand $SNOSTATE are empty.
This should indicate that the simulation provides incosuia results. Moreover, anihis

is an important part, a new seSINDIFF _ERRSTATEIs added to the output. This set
contains our initial state, i.e3. If this set appears in the output, it means that the max.
number of observations (the max. sample size) and/or the sienulation depth are not
large enough to produce the i. tighter than the (specified) value bidiff. reg.

width , see Sectio®.1 If this happens, the simulation run should be discarded te
max. sample size / simulation depth values have to be ineteas

37

9 MRMC Test Suite

In order to keep MRMC bug free and to compare its performaacgher model-checking
tools (such as PRISM{NPO0Z, Ymer [YouO5H and VESTA [5VA04]) we have developed
a fully automated test suite featuring: internal, funcéiband performance tests.

The internal tests are targeted on testing, e. g., MRMC datatares, such as: sparse ma-
trices, bit sets, sample vectors, and etc. The functios#s e used to assess the user-level
behavior of the tool. This includes tests for the command-interface, model-checking
algorithms, and etc. Last but not least, the performands &®w to evaluate the efficiency
of implemented algorithms, such as: probabilistic bisatioh minimization, and “discrete
event simulation” based model checking. Here, we consieleral efficiency aspects: veri-
fication time, memory usage and etc.

The test suite contains well-known case studies: WirelasaiiCommunication Pro-
tocol (WGC) [VINS99, BCGO0Z MKLO04], Simpel Peer-To-Peer Protocol (PTR)NPO4,
Workstation Cluster (WC)HHKO00, BKKTO3, YKNP04, KNP02, KNP08H, Cyclic Server
Polling System (CSP)T90, You05h YouO5g HKMKSO00, SVAO4, YKNPO6, YS06, Ran-
domized Mutual exclusion (RME}Z84, Crowds Protocol (CP}R98 KNP084 and Syn-
chronous Leader Election Protocol (SLE}RDO, LP02 GSB94 FP04.

The test suite is freely distributed and can be obtained:from

http://www.mrmc-tool.org/

Note that, the test suite is intended to be used on a Linufophatonly and its performance
sub suite is not proven to work correctly under "Windows + @yg or "Mac OS X”. For
the test-suite installation instructions see Sec@idof Chapter3. The test-suite structure is
as follows:

e /TS _Manual.pdf - The test-suite manual.

e /LICENSE - A copy of the GPL license.

e /README - The “read me” file.

e /RELEASENOTES - The release notes.

e ./settings.cfg — The configuration script.

e Jtest _all.sh — The test-suite invocation script.
e ./clean _all.sh — The test-suite “clean-up” script.
e ./stop.sh — The test-run termination script.

e ./internal _tests/ — Unit tests of the MRMC core.

38

http://www.mrmc-tool.org/

e ./functional _tests/ — Functional tests of MRMC.

e ./performance _tests/ — Performance tests of MRMC.

39

10 Contact

The development of MRMC began in 2004 in the Formal MethodkTools group (FMT)
at the University of Twente (The Netherlands) under the sugien of Prof. Dr. Ir. Joost-
Pieter Katoen. Later, the main development of the tool wagatido the Software Modeling
and Verification group at the RWTH Aachen (Germany). At pnésieere are several other
groups involved into the tool development, namely the Imfatics for Technical Applica-
tions group at the Radboud University Nijmegen (The Netrett), the Dependable Systems
and Software group at the University of Saarland (Germaany, the Scientific Computing
and Control Theory group at the Centrum voor Wiskunde errinética (The Netherlands).
If you have any questions, comments or ideas, or if you waigatbicipate in MRMC
development, please consider the following contact in&drom:

Name: Prof. Dr. Ir. Joost-Pieter Katoen

Relation: The MRMC team leader, 2004 — present

Affiliation: Software Modeling and Verification, RWTH Aachen, Ger-
many

Name: Dr. lvan S. Zapreev

Relation: MRMC development, 2004 — present

Affiliation: Scientific Computing and Control Theory, Centrum voor
Wiskunde en Informatica, The Netherlands

Name: Dr. Ir. David N. Jansen

Relation: MRMC extension and optimization, 2007 — present
Affiliation: Informatics for Technical Applications, Radboud Univéysi
Nijmegen, The Netherlands

= 0 9

Name: Prof. Dr. Ing. Holger Hermanns
Relation: CTMDPI model checking, 2007 — present
ﬁg@ Affiliation: Dependable Systems and Software, University of Saarland,

Germany

More contact information can be found on the MRMC web-pag2\[08].

40

http://www-i2.informatik.rwth-aachen.de/~katoen/
http://db.cwi.nl/personen/publiek/zoek_show.php4?persnr=2198
http://www.cs.ru.nl/D.Jansen/
http://depend.cs.uni-sb.de/index.php?hermanns

Bibliography

[ABFH*08] Cerion Armour-Brown, Jeremy Fitzhardinge, Tom Hughdisholas Nether-

[AHKO3]

[BCGO2]

[BDHOO]

[BFKTO3]

[BHH06]

[BHHKOO]

[BHHKO3]

cote, Paul Mackerras, Dirk Mueller, Julian Seward, Robeats, and Josef
WeidendorferValgrind, http://www.valgrind.org/2008.

Suzana Andova, H. Hermanns, and Joost-Pieter KatBéscrete-Time Re-
wards Model-CheckedFormal Modeling and Analysis of Timed Systems
(FORMATS) (K.G. Larsen and P. Niebert, eds.), vol. 2791, INGpringer,
2003, pp. 88-104.

A. Bondavalli, A. Coccoli, and F. Di Giandomenid@pS Analysis of Group
Communication Protocols in Wireless Environmeiuwer Academic Pub-
lishers Concurrency in Dependable Computing, 2002.

S. Bernardi, S. Donatelli, and A. Haath, Compositionality in the GreatSPN
Tool and Its Application to the Modelling of Industrial Apgations Practical
Use of High-level Petri Nets (K. Jensen, ed.), UniversityAafrhus, Depart-
ment of Computer Science, 2000, pp. 127-146.

P. Buchholz, M. Fischer, P. Kemper, and C. Tepptdel checking of CTMCs
and discrete event simulation integrated in the APNN-ToglMeasurement,
Modelling, and Evaluation of Computer-Communication 8yss (F. Bause,
ed.), vol. 781, Fachbereich Informatik, Unive&iDortmund, 2003, pp. 30—
33.

Eckard Bode, Marc Herbstritt, Holger Hermanns, Svenr,Jdhomas
Peikenkamp, Reza Pulungan, Ralf Wimmer, and Bernd Beckemposi-
tional Performability Evaluation for STATEMATRuantitative Evaluation of
Systems (QEST), IEEE Computer Society, 2006, pp. 167-178.

Christel Baier, Boudewijn R. Haverkort, Holger Heanns, and Joost-Pieter
Katoen,On the Logical Characterisation of Performability Propes Inter-
national Colloquium on Automata, Languages and Programrii@ALP)
(Ugo Montanari, Jos D. P. Rolim, and Emo Welzl, eds.), LNC&, ¥853,
Springer, 2000, pp. 780-792.

C. Baier, B. Haverkort, H. Hermanns, and J.-P. KatgVodel-Checking Algo-
rithms for Continuous-Time Markov Chain&EE Transactions on Software
Engineering29 (2003), no. 6, 524-541.

41

http://www.valgrind.org/

[BHKHO5]

[BKKTO3]

[CES86]

[CGO04]

[CKKPO5]

[CR65]

[FG88]

[Fis96]

[FouO7]
[FPO4]

[GSBY4]

[HCH*02]

[Her]

Christel Baier, Holger Hermanns, Joost-Pietertdém, and Boudewijn R.
Haverkort, Efficient computation of time-bounded reachability proiiaés
in uniform continuous-time Markov decision proces3dseoretical Computer
Science345(2005), no. 1, 2—-26.

P. Buchholz, J.-P. Katoen, P. Kemper, and C. Teppodel-checking large
structured Markov chainsJournal of Logic and Algebraic Programmibg
(2003), 69-96.

E. M. Clarke, E. A. Emerson, and A. P. SisRatomatic verification of finite-
state concurrent systems using temporal logic specifiogtiBMC Transac-
tions On Programming Languages And Systé($986), no. 2, 244-263.

Frank Ciesinski and Marcus ®@ser, On Probabilistic Computation Tree
Logic, Validation of Stochastic Systems (Christel Baier, BoujlewR.
Haverkort, Holger Hermanns, Joost-Pieter Katoen, and Ma8degle, eds.),
LNCS, vol. 2925, Springer, 2004, pp. 147-188.

L. Cloth, J.-P. Katoen, M. Khattri, and R. Pulungdodel-Checking Markov
Reward Models with Impulse RewardBependable Systems and Networks
(DSN), IEEE Computer Society, 2005, pp. 722—-731.

Y. S. Chow and H. Robbin§n the asymptotic theory of fixed-width sequen-
tial confidence intervals for the meaAnnals of Mathematical Statisti36
(1965), no. 2, 456-462.

Bennett L. Fox and Peter W. Glyn@pmputing Poisson probabilitie€om-
munications of the ACM31 (1988), no. 4, 440-445.

George S. Fishmamonte Carlo: Concepts, Algorithms and Applicatipns
Springer, New York, NY, USA, 1996.

Eclipse Foundatiomclipse http://www.eclipse.org2007.

W. Fokkink and J. Pan&implifying Itai-Rodeh leader election for anonymous
rings, Electronic Notes in Theoretical Computer Scied@8 (2004), no. 6,
53-68.

Rajiv Gupta, Scott A. Smolka, and Shaji Bhaskam, randomization in se-
guential and distributed algorithmsACM Computing Survey6 (1994),
no. 1, 7-86.

B. Haverkort, L. Cloth, H. Hermanns, J.-P. Katoen, andB@ier, Model
Checking Performability PropertiesDependable Systems and Networks
(DSN), IEEE Computer Society, 2002, pp. 103-112.

Holger Hermanns, Homepage of the Dependable Systems group
http://depend.cs.uni-sb.de

42

http://www.eclipse.org
http://depend.cs.uni-sb.de

[HHKOO]

[Hil96]

[HJ94]

[HKMKSO00]

[HKNPO6]

[IR90]

[IT90]

[JKO+07]

[KKNPO1]

[KKZ05]

[KKZJ07]

[KNPO2]

B. Haverkort, H. Hermanns, and J.-P. Kato@m the Use of Model Checking
Techniques for Dependability Evaluatid@ymposium on Reliable Distributed
Systems (SRDS), IEEE Computer Society, 2000, pp. 228-237.

Jane Hillston,A Compositional Approach to Performance Modellimystin-
guished Dissertations Series, Cambridge University Pridssy York, NY,
USA, 1996.

N. Hansson and B. Jonssa@nlogic for reasoning about time and reliability
Formal Aspects of Computing(1994), no. 5, 512-535.

Holger Hermanns, Joost-Pieter Katoen, Joachiey®t-Kayser, and Markus
Siegle,A Markov Chain Model Checkgeffools and Algorithms for the Con-
struction and Analysis of Systems (TACAS) (Susanne Graf Biichael
Schwartzbach, eds.), LNCS, vol. 1785, Springer, 2000, $p-362.

A. Hinton, M. Kwiatkowska, G. Norman, and D. ParkBRISM: A Tool for
Automatic Verification of Probabilistic SystenT®ols and Algorithms for the
Construction and Analysis of Systems (TACAS) (H. Hermanmd & Pals-
berg, eds.), LNCS, vol. 3920, Springer, 2006, pp. 441-444.

Alon Itai and Michael RodelSymmetry breaking in distributed networks
formation and Computatio88 (1990), no. 1, 60-87.

Oliver C. Ibe and Kishor S. TrivediStochastic Petri Net Models of Polling
SystemsSelected Areas in Communicatiof$1990), no. 9, 1649-1657.

David N. Jansen, Joost-Pieter Katoen, Marcel Oldenkamapielle Stoelinga,
and Ivan S. Zapreetjow Fast and Fat Is Your Probabilistic Model Checker?
Haifa Verification Conference (HVC), LNCS, vol. 4899, Spyam, 2007,
pp. 65— 79.

J.-P. Katoen, M. Kwiatkowska, G. Norman, and D. keay Faster and Sym-
bolic CTMC Model CheckingProcess Algebra and Probabilistic Methods,
Performance Modeling and Verification (PAPM/PROBMIV) (laude Alfaro
and Stephen Gilmore, eds.), LNCS, vol. 2165, Springer, 20p123-38.

Joost-Pieter Katoen, Maneesh Khattri, and lvan &2evA Markov Reward
Model CheckerQuantitative Evaluation of Systems (QEST), IEEE Computer
Society, 2005, pp. 243-244.

Joost-Pieter Katoen, Tim Kemna, Ivan S. Zapreewl ®avid N. Jansen,
Bisimulation Minimisation Mostly Speeds Up Probabilidgtiodel Checking

Tools and Algorithms for the Construction and Analysis os@yns (TACAS)

(Orna Grumberg and Michael Huth, eds.), LNCS, vol. 4424 rigy@r, 2007,

pp. 87-101.

M. Kwiatkowska, G. Norman, and D. Park@RISM: Probabilistic Symbolic
Model CheckerModelling Techniques and Tools for Computer Performance

43

[KNPO6]

[KNPO8a]

[KNPOSD]

[KZ05]

[KZ06]

[LPO2]

[MKLO4]

[MNO8]

[MNS99]

[01d07]

[PM88]

[PtFSF074]

Evaluation (TOOLS) (T. Field, P. Harrison, J. Bradley, andHarder, eds.),
LNCS, vol. 2324, Springer, 2002, pp. 200-204.

, Symmetry Reduction for Probabilistic Model Checki@pmputer
Aided Verification (CAV) (T. Ball and R. Jones, eds.), LNCl.v4114,
Springer, 2006, pp. 234—-248.

, Prism case studiesittp://www.prismmodelchecker.org/casestudies/

2008.

: Prism web-page, Workstation Cluster Example
http://www.prismmodelchecker.org/casestudies/chyst@ 2008.

J.-P. Katoen and Ivan S. Zapre8&afe On-The-Fly Steady-State Detection for
Time-Bounded Reachabiljtfech. Report TR-CTIT-05-52, CTIT, University
of Twente, 2005.

Joost-Pieter Katoen and Ivan S. ZapreBafe On-The-Fly Steady-State De-
tection for Time-Bounded ReachabilitQuantitative Evaluation of Systems
(QEST), IEEE Computer Society, 2006, pp. 301-310.

Richard Lassaigne and Sylvain Peyronnéjpproximate verification of
probabilistic systemsProcess Algebra and Probabilistic Methods, Perfor-
mance Modeling and Verification (PAPM/PROBMIV) (Holger Heanns and
Roberto Segala, eds.), Springer, 2002, pp. 213-214.

Mieke Massink, Joost-Pieter Katoen, and Diego WateModel Checking De-
pendability Attributes of Wireless Group Communicati@ependable Sys-
tems and Networks (DSN), IEEE Computer Society, 2004, pp-720.

Makoto Matsumoto and Takuji NishimuraMersenne Twister: A 623-
dimensionally equidistributed uniform pseudorandom nemgeneratoy

ACM Transactions on Modeling and Computer Simulat®(il998), no. 1,
3-30.

Michael Mock, Edgar Nett, and Stefan Schemnisgficient Reliable Real-
Time Group Communication for Wireless Local Area Netwpikgropean
Dependable Computing Conference (Jan Hlavicka, Erik Mgedmhd Andrs
Pataricza, eds.), LNCS, vol. 1667, Springer, 1999, pp. 380—

H.A. OldenkampProbabilistic model checking: A comparison of tqdi4as-
ter's thesis, University of Twente, Faculty EEMCS, Compueience De-
partment, Formal Methods and Tools Group, Enschede, Natttky, 2007.

Stephen K. Park and Keith W. MilleRandom Number Generators: Good
Ones Are Hard to FindCommun. ACM31(1988), no. 10, 1192-1201.

GNU Project and the Free Software Founda®dit) General Public License
(GPL), http://www.gnu.org/copyleft/gpl.ntmR007.

44

http://www.prismmodelchecker.org/casestudies/
http://www.prismmodelchecker.org/casestudies/cluster.php
http://www.gnu.org/copyleft/gpl.html

[PtFSFO7b] , GNU Scientific Library (GSL) http://www.gnu.org/software/gs|

2007.

[PZ86] A. Pnueli and L. Zuck\erification of Multiprocess Probabilistic Protocols
Distributed Computing. (1986), no. 1, 53-72.

[QS96] M. A. Qureshi and W. H. Sandes,New Methodology for Calculating Dis-
tributions of Reward Accumulated During a Finite Interyvéault-Tolerant
Computing, IEEE Computer Society, 1996, pp. 116-125.

[RR98] M. K. Reiter and A. D. RubinCrowds: Anonymity for Web Transactigns
ACM Transactions on Information and System Security, vpIACM Press,
1998, pp. 66-92.

[Sch95] Bruce SchneieApplied cryptography (2nd ed.): protocols, algorithmsdan
source code in CJohn Wiley & Sons, Inc., New York, NY, USA, 1995.

[SVAO4] Koushik Sen, Mahesh Viswanathan, and Gul Agbgtistical Model Check-
ing of Black-Box Probabilistic SystemSomputer Aided Verification (CAV)
(Rajeev Alur and Doron A. Peled, eds.), LNCS, vol. 3114, &per, 2004,
pp. 202-215.

[SVAO5] , On Statistical Model Checking of Stochastic Syste@@mputer
Aided Verification (CAV) (Kousha Etessami and Sriram K. Ragmi, eds.),

LNCS, vol. 3576, Springer, 2005, pp. 266—280.

[TGO6] Mirco Tribastone and Stephen GilmorA, New Generation PEPA Work-
bench Process Algebra and Stochastically Timed Activities (PAS 2006,
pp. 1820-1845.

[TVOO] H. C. Tijms and R. VeldmanA fast algorithm for the transient reward dis-
tribution in continuous-time Markov chain®O©perations Research Letters,
vol. 26, 2000, pp. 155-158.

[YKNPO4] H. Younes, M. Kwiatkowska, G. Norman, and D. Parkéumerical vs. Sta-
tistical Probabilistic Model Checking: An Empirical Studjools and Algo-
rithms for the Construction and Analysis of Systems (TAC/AS)Jensen and
A. Podelski, eds.), LNCS, vol. 2988, Springer, 2004, pp.66—

[YKNPO6] Hakan Younes, Marta Kwiatkowska, Gethin Norman, and DaviddétaNu-
merical vs. Statistical Probabilistic Model Checkjr@pftware Tools for Tech-
nology Transfer (STTT$ (2006), no. 3, 216-228.

[YouO4] H. Younes,Black-box probabilistic verificationTech. Report CMU-CS-04-
162, Carnegie Mellon University, 2004.

[YouO5a] , Verification and Planning for Stochastic Processes with nAsy
chronous EventdPh.D. thesis, Computer Science Department, Carnegie Mel-

lon University, Pittsburgh, PA, USA, 2005.

45

http://www.gnu.org/software/gsl

[YouO5b]

[YS02]

[YS06]

[Zap08]

[ZIN*08]

, Ymer: A Statistical Model Checke€omputer Aided Verification
(CAV) (Kousha Etessami and Sriram K. Rajamani, eds.), LN@%, 3576,
Springer, 2005, pp. 429-433.

Hakan Younes and Reid Simmoi®pbabilistic Verification of Discrete Event
Systems using Acceptance Sampli@@mputer Aided Verification (CAV)
(Ed Brinksma and Kim Guldstrand Larsen, eds.), LNCS, vo0£&4pringer,
2002, pp. 223-235.

H. Younes and R. Simmon§tatistical Probabilistic Model Checking with
a Focus on Time-Bounded Propertiemformation and Computatio204
(2006), no. 9, 1368-1409.

I. S. Zapreewlodel Checking Markov Chains: Techniques and ToBlsD.
thesis, University of Twente, Enschede, The Netherlan@i3d2

lvan S. Zapreev, Christina Jansen, Viet Yen Nguyen, ®akiJansen, et al.,
MRMC homepagéttp://www.mrmc-tool.org/2008.

46

http://www.mrmc-tool.org/

A CTMDPI: Model examples

This appendix describes CTMDPI models supported by MRM@&sEhare the input mod-
els for the CTMDPI model-checking componest{KHO05] of MRMC, developed by the
Dependable Systems and Software gradpi] of the Saarland University.

A.1 Markov decision processes

In general, Markov decision processes (MDPs), and CTMD#|garticular, are similar to
Markov chains, except that in addition to the stochastinditeons they also allow for the
non-deterministic ones. The non-determinism introdugetthbm is supposed to be resolved
by some scheduler.

Typically, MDPs are expected to have an initial distribaticHowever, we will assume
that there is just one initial state, namely the stiaté any given CTMDPI model.

Figure A.1: A CTMDP example

Example 9 An example CTMDP is depicted in Figufel This model contains only two
states:1 and2. For the first one, a scheduler can choose between two tiansjtnamely
a andb. If the choice is done in favor of the first one, then furtherhage a probabilistic
choice defined by the rateof going to state2 and the rate oft of going back to staté.
Alternative, if the scheduler chooslesthe rate of returning to staté is only 1 and to state
2 is 6. State2 does not have a true non-deterministic choice, because tiseonly one
non-deterministic transition present.

It becomes clear now, that with MDP models, like with simplEMICs, one can be inter-
ested in computing, e. g., reachability probabilities ated €he only difference is that, since
we can have any possible scheduler, we have to talk aboutnali@ind maximal probabili-
ties. All this implies that we can actually do model checkaigTMDPs.

a7

A.1.1 Markov decision processes with internal non determin Ism

The CTMDP described before has only one level of non detesminlt is also possible to
have CTMDPs with two layers of non-determinism, in this casecall them CTMDPIs. On
the first layer, an external scheduler takes a decision, dnanternal decision occurs, and
after this the probabilistic decision takes place.

STATES 2
#DECLARATION
#END

la
*27.0
la
*14.0
*23.0
1b
*11.0
*26.0
2a
*27.0
2a
*25.0

2 *12.0

Figure A.2: A CTMDPI example

Example 10 Consider a CTMDPI model given in the left-hand side of Figlira In this
model, statd has two external non-determinism choice@sandb. If decisiona is taken,
then there is an internal non-deterministic choice. Onenlofaof it leads to going to state
2 with the rate7. The other one leads to going to st&tvith the rate3 and to statel with
the rate4. Decisionb leads to a trivial internal non-determinism. Statdnas an internal
non-determinism as well.

The CTMDP examples above are given by state-transitionrseg@onding distributions,
and labeling functions that map sets of labels to the tramsit Note that, for model checking
we also need to provide state labeling functions (in ourstseset of state labels are empty).

In order to be used with MRMC, CTMDPIs have to be transfornmed the MRMC input
files that have an extensioatmdpi . For example, the model given in the left-hand side
of FigureA.2 results in a file given in right-hand side of the same figures iinportant to
note, that CTMDPI model checking uses CSL for specifyingoprties. At present we only
support time-bounded reachability properties. Similathis CTMC model checking, these
properties are based on state labels that have to be spenifiethb file. The transition
labels are needed only for the CTMDPI model-checking engime should not be used in
properties.

48

B RNG Investigations

We define random number generators (RNGSs) as algorithmaltbatto generate uniformly
distributed random numbers for a prescribed real interval.

RNG implementations are commonly used in programming apeaaslly in discrete-
event simulation engines. In MRMC we use RNGs for simulatiisgrete or exponentially
distributed random variables. The first ones are used tolatethe probabilistic choice
between state-transitions and the second ones are empglmgadulate exponentially dis-
tributed waiting times of CTMC states.

Nowadays, there exist many RNGs, but often these generatorsn various aspects. For
example, they can differ in: time needed to calculate a randomber or the quality of their
output. The latter aspect can be split in (at least) two parte generator can calculate more
equidistributional random numbers than the other; difieigenerators can have different
periods i. e. the number of method invocations after which the gateerrandom numbers
start to repeat in a circular manner. In our experimentsughowe mainly concentrated
on how good RNGs are for generating values of non-unifornordte and exponentially
distributed random variables. This was done by accessiagpeed of random-number
generation and the correspondence of the sampled disbiisub the original ones.

To choose which generator is better and can be used as atdef@euln MRMC, we
tested seven different RNGs. Some of them were taken betaegalready made it into
probabilistic model checkers such as PRISM, Ymer or VEST&,dthers are widely used
in industry, and etc.

The rest of the appendix is organized as follows: Sedbidmpresents the description of the
considered RNGs. Further, in SectiBr, we explain how RNGs can be used for generating
values of non-uniform discrete and exponentially distiglorandom variables, and present
the experimental setup. SectiBri3 provides the experimental results and comparison.

B.1 Random Number Generators

Here, we provide a short summary of the tested RNGs, andradscate the MRMC option
values corresponding to each of them.

B.1.1 Linear Congruential Generator (LCG) — prism

LCG is the oldest and mostly used random-number generagoridgim. A sequence of
random numbers is calculated according to the formyla = (a * x,, + ¢) mod m, where
xo denotes the seed (the initial value) ands the RNG's period. The considered LCG is
implemented as the random functi@nd() of the standard C library (gcc). The useahd()
was taken into account, because PRISM uses it in its siroulamgine. However, it should

49

be noted that the C random function is known to suffer fromvaperiod. Even th&2-bit
version of it can only offer a period of, = 232

B.1.2 Improved LCG [PM88] (ILCG) — ciardo

ILCG is a version of LCG, developed by Steve Park and Keithevlillt works similar to
the Standard C random function, but is known to generate mguélistributional random
numbers. Therefore, it is often proposed to be used insteeahd(), although it also has a
small period ofm = 232,

B.1.3 Combined LCG [Sch95] (CLCG) — app _crypt

This RNG is another extension of the standard LCG. The marargdge of this method is
that, by using two independent LCGs, it increases the pemao aboutn = 2%4. Note that,
in most cases it is more efficient to combine two LCGs thamigkine with a much larger
modulus (period). CLCG is widely used in the field of Cryptaginy.

B.1.4 Mersenne Twister [MN98] (Twister) — ymer

The Mersenne Twister is a random-number generator devetlop&lakoto Matsumoto and
Takuji Nishimura in1997. Today, there exist several variants of this algorithm. \&feeh
chosen Mersenne Twister MT19932(bit version), because it is the newest and most com-
monly used one. This algorithm is also employed by Ymer amdesowith a large period of

m — 919937 _ 1

B.1.5 RNGs from GSL [PtFSF07b]
RNGs introduced in this section are a part of the GNU Scientifirary (GSL).

Ranlux Generator (Ranlux) — gsl _ranlux

According to the GSL documentation, the implemented RANL&l¥orithm is a second-
generation version of the RANLUX algorithm ofilscher and has a period of about=
10", GSL developers recommend this algorithm as the one witlh&se mathematically-
proven quality at the expense of performance.

Lagged Fibonacci Generator (LFG) — gsl _Ifg

According to the GSL documentation, LFG produces randombarsnasror’d sum of
previously calculated values on the basis of the followimgrfula:

7y =Tp_a XOR7,_g XOR7r,_c XORr,,_p

with A = 471, B = 1586, C' = 6988, D = 9689. This RNG has a period of = 10%°'7
and is recommended by GSL developers as a fast simulatialiyggenerator.

50

Tausworthe Generator (Tausworthe) — gsl _taus

According to the GSL documentation this is a maximally egiibuted combined Taus-
worthe generator (or polynomial generator) by L'Ecuyertwat period ofm = 2% (about
10%%). Like the lagged Fibonacci generator, the Tausworthe rgémeis recommended by
GSL developers as a fast simulation-quality generatordwis faster than LFG).

B.2 Experimental setup

In this section, we describe the experimental setup usethtevaluation of the before
mentioned RNGs, in application to generation of non-umifatiscrete and exponentially
distributed random variables.

In essence, our approach is based on taking a random vanidbla particular distribution
and sampling a set of its values (produced with the help ofracpéar RNG). These values
are then used for computing the estimate of the underlyisgildution. The latter one is
compared to the original distribution of the random vamablhe main values measured in
our experiments (per distribution), are as follows:

1. The time needed for generating a random values when ugiagiaular RNG.

2. The difference between the estimated and original digions.

B.2.1 Non-Uniform Discrete Random Variables

Generation of non-uniformly distributed discrete randammibers, employing standard RNGs
mentioned in SectioB.1, is typically done in the following manner.

Let us have a discrete random variablevith a finite set of values., ..., z,. The value
z; is then produced with probability; for any: € 1,...,nand> " p, = 1.0. Let us now
have an RNG which generates us random numbers in the infetyab] with 0 < A < B.
Then, to generate values ofwve should perform the following steps:

1. Split the real interval0, 1] into n fixed non-overlapping intervalg, . . ., I,, such that
the width of[; equals tg; forany: € 1,...,n.

2. Generate a uniformly-distributed random numbeand scale it down using the for-
mulaC/ (B — A). This way we obtain the value in the interyaJ 1].

3. Findj € 1,...,n such thatC/ (B — A) € I;. Thisj exists becausél;};_, forms a
coverage of0, 1].

4. Returnz; as the value of the random variable

Clearly, stepl. has to be performed only once and st&tet® 3. result in values of: that
agree to its distribution.

51

Test Distributions

For our experiments we have chosen six different probgdliistributions. Each of these
distributions had 00 values, most of which with non-zero probabilities.

1. The standard uniform distribution (“Unif”).

2. A non-uniform distribution (“Diff”), where one value apprs with a very high proba-
bility (0.899924), and all other values have very small or zero probabilities

3. The “Lorentz” distributioh with the largest and smallest probabilities being equal to
0.013151 and0.00685 respectively.

4. Three distributions: “Po®/, “Pow3” and “Pow!”. For eachX € {2, 3, 4}, “PowX”
was generated as follows:

a) Generatd00 random values using a uniform distribution on the intefoall].
b) Take these values to the pow&r

¢) Normalize the resulting values in such a way that they sprowne.

d) Take the new values as probabilities for the distributon, . . ., 100.

Test Settings

For a given RNGR and a distributionD every distribution estimate was computed based
on 1.000.000 sampled values. Also, for every givéhand R, we computed0 distribution
estimates.

The run time forR on D was calculated as a mean time needed for generafingstribu-
tion estimates. The quality of ea¢hon D was estimated based on the following quantitative

value:
100 50

1 pz_pi‘
Z%ZT’ (B.1)

i=1 j=1

100 - .- ;1100 20
where{p; },_; is the set of probability values of the original dIStI’IbUIIIand{{pZ}i:l}

are the probabilities of the0 sampled distributions.

i=1

B.2.2 Exponentially Distributed Random Variables

The exponential distribution is a probability distributiover the set of positive real num-
bers. In order to generate values of an exponentiallytdiged random variable, we use the
commonly known inversion method: ifis a uniformly-distributed random variable then

T = —Xln(l —u)

has exponential distribution with the rate As an optimization, we use formula:

1
T = —Xln(u),

ta well-known probability distribution in physics

52

sincel — u is a uniformly-distributed random variable itself.

Test Distributions

We considered exponential distributions wkke {0.01, 0.1, 0.5, 1.0, 5.0, 10.0}.

Test Settings

For every given\ (distribution£) and every RNGR we sampled 0.000.000 random values.

The run time forR on E, was calculated as a total time needed for generating all of
these values. Since exponential distribution is contisuthue quality of eacl® on E, was
estimated using discretization:

1. ComputelM — the maximum over all simulated values.

2. For§ = 0.3, computeN = M /§+1—the number of intervals that form a partitioning
of the simulated valuel; } , wherel, = [(i — 1) % 6, i % §)?

3. DefineP;, = Prob(X € I) fori € 1,..., N and X being a random variable with the
distribution E;.

4. DefineP! = S;/10" fori € 1,..., N andsS; being the number of simulated values that
fall into the intervall;.

This process gives us a discrete distribution: foraayl, . .., N we havel; with probability
P;; and an estimate of this distribution: defined by the valu‘egR}}fil. The quality ofR
on D was then estimated based on the quality of the discritizedmantial distribution and
its discritized estimate. This was done by computing thieéahg quantitative value:

N

[P — P
P (B.2)
=1 5

Note that, this formula is different from the one given by Btijon B.1. Here we divide
| P, — P/| by ¢ because we are interested in the quality with which we apprabe the density
function of the original (continuous) distribution.

B.3 RNG comparison - results

All experiments were done on a standard PC with an AM&thlon® CPU3000+ processor
(64-bit) and an2 GB of RAM. The used operating system was openSLUGE

B.3.1 Non-Uniformly Random Numbers

A brief summary of the obtained results can be found in T&ble

2 In our experiments, we had probabilities over intervald0.0, 0.3),...,[2.7, 3.0) for A €
{0.01, 0.1, 0.5, 1.0, 5.0}; and[0.0, 0.3),...,[1.2, 1.5) for A = 10.0.

53

| Position| Speed | Simulation Quality|

1. LFG Ranlux
Tausworthe
CLCG
2. Twister LFG
LCG Tausworthe

ILCG CLCG
Twister

ILCG

3. Ranlux LCG

Table B.1: Non-uniform discrete random variables

Run time

The time needed for generatind)00.000 random values for the considered RNGs on cor-
responding distributions is provided in FiguBel. The quality of every RNG on every
distribution is summarized in Tab.2.

3.5e+07 T T T T

ILCG

Twister
3e+07 Ranlux

2.5e+07

2e+07

1.5e+07

Runtime (micro sec.)

le+07

5e+06

Diff Pow2 Pow3 Pow4 Unif Lorentz
Distribution

Figure B.1: Run time: Non-uniform discrete random variable

Having a closer look at Figui®.1 and TableB.2, the results can be formulated as follows.
From the run-time point of view, the RNG with worst perforrosans clearly the Ranlux
Generator, which positioned itself behind all other RNGsvary of the six test cases. The
first three places are fought out between Tausworthe, LFGC@IS in three out of six test
cases, whereat they still gained leading positions in threaneing three cases. By looking at
the plots in detail, one may notice that LFG and Tauswortive Banilar results in every test
case, whereas CLCG is remarkably faster in “Lorentz” andv#o remarkably slower in

54

8‘ Distribution

o Diff Pow2 Pow3 Pow4 Unif Lorenz

1 | Tausworthe) LFG LFG CLCG LFG CLCG

2 LFG Tausworthel Tausworthe| Twister | Tausworthe LCG

3 CLCG CLCG ILCG LFG CLFG Tausworthe
4 LCG Twister LCG LCG ILCG LFG

5 Twister LCG Twister | Tausworthe LCG Twister

6 ILCG ILCG ILFG ILCG Twister ILCG

7 Ranlux Ranlux Ranlux Ranlux Ranlux Ranlux

Table B.2: Run time: Non-uniform discrete random variables

“Diff” and “Unif” distribution. Summarized, LFG and Tauswihe positioned themselves in
first place, closely followed by CLCG. The middle-ranked RN&e then LCG, ILCG and
Twister with similar results, with ILCG tending to be the wiest out of this three RNGs,
except from the “Unif” test case, and with Twister and LCG ppiag positions from case

to case.

Sums of average errors

The sum of average errors for the considered RNGs on comdspgpdistributions is pro-
vided in FigureB.2. The quality of every RNG on every distribution is summadide

TableB.2.

Sum of average errors

Diff

Pow?2

T
CLCG mmmmm
LCG mmmm
ILCG ==
Twister T
Ranlux o
LFG —
Tausworthe o -

Unif Lorentz

3 P
Distribution

Figure B.2: Sums of average errors: Non-uniform discreteloan variables

The results of Figur8.2 and TableB.3 can be formulated as follows. From the simulation-
quality point of view, the Ranlux Generator positioned litge leading position. It gained

55

Distribution

(7]

g Diff Pow2 Pow3 Pow4 Unif Lorenz

1 ILCG Ranlux CLCG Ranlux ILCG ILCG

2 Twister | Tausworthel Ranlux CLCG Ranlux LFG

3 LFG LFG ILCG LFG LFG Twister

4 CLCG Twister Twister | Tausworthe Tausworthe Ranlux

5 LCG CLCG Tausworthe Twister Twister | Tausworthe
6 | Tausworthe) ILCG LFG ILCG CLCG CLCG

7 Ranlux LCG LCG LCG LCG LCG

Table B.3: Sums of average errors: Non-uniform discretd@amvariables

first/second places in four out of six test cases. Only for“Di” distribution Ranlux
Generator produces poor results compared to the remaimi@sk Furthermore, as LCG
produced worst results in five out of six test cases, it gfeeah be seen as the RNG with
the poorest simulation quality in our testing environmehlthough the simulation quality
middle-ranked RNGs aren’t clearly distinguishable, one @atect some trends there. LFG
obtains position three with most stability, whereas ILC@®w#b the biggest difference in
positioning through the whole test cases. Twister can maslfound around places four
to five, CLCG and Tausworthe mostly show up on places fountoSummarized, no clear
ordering can be found for the middle-ranked RNGs.

B.3.2 Exponentially Distributed Random Numbers

A brief summary of the obtained results can be found in T&be

| Position| Speed | Simulation Quality|

1. CLCG Ranlux

2. LFG LFG
Twister Twister

Tausworthe CLCG

LCG Tausworthe
ILCG ILCG
LCG
3. Ranlux

Table B.4: Exponentially distributed random variables

Run time

The time needed for generating.000.000 random values for the considered RNGs on cor-
responding distributions is provided in FiguBe3. The quality of every RNG on every

56

distribution is summarized in Tab.5.

le+07

9e+06

8e+06

7e+06

6e+06

Runtime (micro sec.)

5e+06

4e+06

3e+06

2e+06

0.01

0.1

5 1.0
Lambda

5.0

10.0

Figure B.3: Run time: Exponentially distributed randomiahales

%5 A

o 0.01 0.1 0.5 1.0 5.0 10.0

1 CLCG Twister CLCG CLCG CLCG CLCG

2 LFG CLCG LFG LFG LFG Twister

3 ILCG Tausworthel Twister LCG LCG LCG

4 Twister LFG LCG Twister Twister ILCG

5 LCG ILCG ILCG Tausworthe Tausworthe| Tausworthe
6 | Tausworthe LCG Tausworthe ILCG ILCG LFG

7 Ranlux Ranlux Ranlux Ranlux Ranlux Ranlux

Table B.5: Run time: Exponentially distributed random shtes

Having a closer look at Figurg.3 and TableB.5, the results can be formulated as follows.
From runtime point of view CLCG can be seen as the winner ollazoasidered RNGs.
In five out of six test cases it was placed first, for the sixtbec@LCG was placed second.
When looking at pure runtime, Ranlux Generator again shdtegvorst performance of all
RNGs and all test cases examined. The middle-ranked RNGlsazaty be ordered. ILCG
and Tausworthe Generator shows poor performance relativethe remaining RNGs, in
most of the test cases, closely followed by CLG. Thus LFG amgtér position themselves
at positions two and three, with LFG producing slightly betesults.

57

Sums of errors

The sum of errors for the considered RNGs on correspondistglalitions is provided in
FigureB.4. The quality of every RNG on every distribution is summadiae TableB.6.

0.035 T T T T T
CLCG mmmmm

LCG ===
ILCG ===
0.03 Twister T
: Ranlux .
LFG /3
Tausworthe

0.025

0.02

0.015

Sum of Errors

0.01

0.005

0.01 0.1 0.5 1.0 5.0 10.0
Lambda

Figure B.4: Sums of errors: Exponentially distributed ramdvariables

8’ A

o 0.01 0.1 0.5 1.0 5.0 10.0

1 Ranlux LFG ILCG ILCG Ranlux LFG

2 LCG LCG Ranlux LCG LFG Twister

3 ILCG Ranlux | Tausworthe CLCG Twister ILCG

4 CLCG Tausworthe, Twister | Tausworthe LCG Ranlux

5 Twister CLCG CLCG LFG CLCG LCG

6 | Tausworthe) ILCG LCG Ranlux | Tausworthe CLCG

7 LFG Twister LFG Twister ILCG Tausworthe

Table B.6: Sums of errors: Exponentially distributed ramd@riables

The results of Figur&.4 and TableB.6 are hard to summarize by giving an exact ordering
on the considered RNGs. Tausworthe Generator, as well assCERow (at least for the
middle- to low-ranked positions) some kind of stability dages four to six for Tausworthe
Generator and places three to six for CLCG respectively.c€oning the leading positions,
Ranlux is the only RNG showing durable behavior on positioa o three in four out of the
six test cases. The remaining RNGs — namely LFG, LCG, ILCGTanidter — permanently
change positions with being in first place for one test casé,abeady in last place for

58

another. As no clear tendency could be observed here, winabtarge field of middle-
ranked RNGs for the simulation quality tests.

59

	1 Introduction
	2 MRMC tool description
	3 Building MRMC
	3.1 Building MRMC from source code
	3.1.1 Getting & Installing GSL
	3.1.2 Linux
	3.1.3 Windows
	3.1.4 Mac OS X

	3.2 Getting & Installing Test Suite
	3.2.1 Configuring tests

	4 MRMC's Input Files
	4.1 The .tra File Format
	4.2 The .lab File Format
	4.3 The .ctmdpi File Format
	4.4 The .rew File Format
	4.5 The .rewi File Format
	4.6 Getting MRMC models
	4.6.1 PRISM
	4.6.2 Performance Evaluation Process Algebra (PEPA)

	5 Running MRMC
	5.1 Command line options

	6 MRMC run-time Commands
	6.1 Basic Commands
	6.1.1 help
	6.1.2 help logic
	6.1.3 help simulation
	6.1.4 help rewards
	6.1.5 help common
	6.1.6 print

	6.2 Advanced Commands
	6.2.1 Common
	6.2.2 Numerical Methods
	6.2.3 Simulation
	6.2.4 Rewards

	7 Property Specification with Temporal Logics
	7.1 Common-logic subset
	7.1.1 State formulae
	7.1.2 Path formulae

	7.2 PCTL
	7.3 PRCTL
	7.4 CSL
	7.5 CSRL

	8 Model Checking by Discrete Event Simulations
	8.1 Confidence intervals and model checking
	8.1.1 Simple problem
	8.1.2 Using confidence intervals
	8.1.3 Solving the problems

	8.2 Simulation engine

	9 MRMC Test Suite
	10 Contact
	A CTMDPI: Model examples
	A.1 Markov decision processes
	A.1.1 Markov decision processes with internal non determinism

	B RNG Investigations
	B.1 Random Number Generators
	B.1.1 Linear Congruential Generator (LCG) -- prism
	B.1.2 Improved LCG (ILCG) -- ciardo
	B.1.3 Combined LCG (CLCG) -- app_crypt
	B.1.4 Mersenne Twister (Twister) -- ymer
	B.1.5 RNGs from GSL

	B.2 Experimental setup
	B.2.1 Non-Uniform Discrete Random Variables
	B.2.2 Exponentially Distributed Random Variables

	B.3 RNG comparison - results
	B.3.1 Non-Uniformly Random Numbers
	B.3.2 Exponentially Distributed Random Numbers

