fay
Y
University of Twente
Enschede - The Netherlands

#GIMN UNIVERSITAT Radboud
K= Rk .
SAARLANDES 3 &7 £ Umuversity

| :
; %Mmefg Nij megen

RHEINISCH-
WESTFALISCHE
TECHNISCHE
HOCHSCHULE
AACHEN

Manual

MRMC TEST SUITE

Version 1.3

June 17, 2008

Authors:
Ivan S. Zapreev
Christina Jansen

nijmeegs instituut
voor informatica
en informatiekunde

Formal N X)
ﬁ Methods
& Tools

O *

Contents

1. Introduction

2. General details
2.1. Whatisthatwe aretesting?
2.2. Top-level test-suite structure e
2.3. Configuringtests

2.4. Commontest-suitefiles

3. Managing tests

3.1, RUNNING o e e e e
3.1.1. Internal and functionaltests
3.1.2. Lumping-performancetests 10
3.1.3. Simulation-performancetests 14
3.2, StOPPING 16
33. Cleaning 17
4. Internal and functional tests 18
5. Performance tests 19
5.1. Lumping-performancetests oo 19
5.1.1. Teststructure 21

5.1.2. Test statistics

5.2. Simulations-performancetests

5.2.1. Test structure

5.2.2. Test statistics

6. Contact

A. Using Ymer

1. Introduction

MRMC [KKZ05, JKO"07, Zap0g is a command-line tool for model checking discrete-,
continuous- time Markov chains, and their reward exterssitiralso support model checking
of continuous-time Markov decision processes.

In order to keep MRMC bug free and to compare its performamogtter model-checking
tools (such as PRISMKNPOZ, Ymer [YouO5H and VESTA [5VAO4]) we have developed
a fully automated test suite featuring: internal, funcéiband performance tests.

The internal tests are targeted on testing, e. g., MRMC datetares, such as: sparse ma-
trices, bit sets, sample vectors, and etc. The functios#s e used to assess the user-level
behavior of the tool. This includes tests for the command-interface, model-checking
algorithms, and etc. Last but not least, the performands &ew to evaluate the efficiency
of implemented algorithms, such as: probabilistic bis@tioh minimization, and “discrete
event simulation” based model checking. Here, we consielesral efficiency aspects: veri-
fication time, memory usage and etc.

The test suite contains well-known case studies: Wirelassii Communication Pro-
tocol (WGC) [MNS99, BCGOZ MKLO4], Simpel Peer-To-Peer Protocol (PTRNPO],
Workstation Cluster (WC)HHKO00, BKKTO3, YKNPO4, KNP02 KNP08H, Cyclic Server
Polling System (CSP)T90, You05h You055 HKMKS00, SVA04, YKNPOG, YS0¢, Ran-
domized Mutual exclusion (RME}{Z8€, Crowds Protocol (CP){R98 KNP084 and Syn-
chronous Leader Election Protocol (SLE}§O, LP0O2 GSB94 FP04.

The test suite is freely distributed and can be obtained:from

http://www.mrmc-tool.org/

Note that, the test suite is intended to be used on a Linufophatonly and its performance
sub suite is not proven to work correctly under "Windows + @yg or "Mac OS X".

This manual contains the description of the test suite forMRv1.3. The provided
description is not complete, and is more-or-less a sort#elation of notes and various facts
related to the test suite. It should simplify the processagfuaintance with the MRMC
testing but the best understanding of the process can beobtdyned through reading the
test-suite scripts.

The rest of the document is organized as follows. Chaptgves an overview of the test-
suite. There, we discuss what and how we test, we also talitdbe test-suite structure,
its’ configuration parameters and common-file types. Chiapexplains how the tests can
be invoked, stopped and cleaned. In addition, we show howetfterun outputs should be
interpreted. Chaptersand5 provide additional information aboutternal, functionaland
performanceests. Chapte contains contact information.

http://www.mrmc-tool.org/

2. General detalls

In this chapter we are going to discuss some details abouegitesuite’s designation, top-
level structure, configuration parameters, and most confitetypes.

2.1. What is that we are testing?

The MRMC test suite consists of three major parts that alse kabdivisions:
1. internal — unit tests for the MRMC core.
2. functional — contains the tests for:

e The command-prompt interface of MRMC.
e Model-checking algorithms for:

— Model checking PRCTL properties on DTMCs.
Model checking CSL properties on CTMCs:
+x Numerical algorithms.
x Discrete event simulation algorithms.
Model checking PRCTL properties on DMRMs.
Model checking CSRL properties on CMRMs.
Model checking CSL properties on CTMDPs.
Probabilistic bisimulation for DTMCs, CTMCs, DMRMs, and GWs.

3. performance — contains the tests for:

e | unpi ng — Measures the effects of strong bisimulation minimizatromodel
checking of DTMCs, CTMCs, DMRMs, and CMRMs. The latter twdiwstate
rewards only.

e si nul at i ons — Compares the efficiency of the discrete event simulation en
gines of MRMC, Ymer, and VESTA, when model checking CTMCs.

Internal tests are simpl€ programs that include MRMC sources and manipulate with
the tools data structures and/or algorithms. These pragprovide some output that, when
compared to the expected output, allow to check whether btheoMRMC interns are
working properly.

Functionaltests assess that MRMC, when invoked with certain commaediptions and
run on certain input files, command-prompt commands andfical formulae, produces
the expected output.

Performancetests forl unpi ng run MRMC on various case studies and collect time
and memory statistics for verifying the Markov chains, aadrhinimizing plus verifying
the lumped Markov chain. The latter is done for both formidgendent and formula-
independent lumping. The time statistics is based on thesethtime output of MRMC,
whereas memory statistics is collected using the stanplardtility. The latter is periodi-
cally invoked during the test runs. For more information @hexperimental settings read
Sectiond.2 of [Zap04.

Performanceests forsi nul at i ons allow to run MRMC v1.3, Ymer (8.0) and VESTA
(v2.0) on various case studies and collect time, memoopfidenceandsamplesstatistics
for verifying the CTMCs. Theonfidencestatistics estimates the % of correct answers pro-
duced by the same tool on the same model with the same inpis samplesstatistics
reflects the average number of states visited when verifgigiyen property with a given
tool on a given model. The time asdmplestatistics are based on the tool outputs with one
exception. By default, Ymer does not report on the numberaided states. Therefore,
we extended the tool with the requirgdint statement (for more details see Appendix
The memory statistics, for all tools, is collected the samag &s it is done for theunpi ng
tests. For more information about matching the tool paramseind other experimental set-
tings read Sectiong1 and7.2 of [Zap04.

Note that,| unpi ng andsi mul at i ons sub-suites both use PRISM and its models for
generating MRMC input files (Markov chains, labeling, ressr

Extended information about theerformanceest-suite can be found in Chapter

2.2. Top-level test-suite structure

After downloading theVRMC t est v1. 3. zi p file, unpack it in the MRMC folder. As
a result a directoryWVRMC_ HOVE DI R/ MRMC t est .v1. 3/ will be created. Further, for
brevity, we assume that you rename it iMBMC_ HOVE_ DI R/ t est /. Then the test-suite
structure is as follows:

e ./ TS.Manual . pdf — The test-suite manual.

e ./ LI CENSE — A copy of the GPL license.

e ./ README — The “read me” file.

e ./ RELEASENOTES - The release notes.

e ./settings.cfg — The configuration script.

e ./test all.sh — The test-suite invocation script.
e ./clean.all.sh — The test-suite “clean-up” script.

e ./stop.sh — The test-run termination script.

e ./internal tests/ — Unittests of the MRMC core.
e ./functional tests/ - Functional tests of MRMC.
e ./performance_tests/ - Performance tests of MRMC.

2.3. Configuring tests

The main configuration parameters of the MRMC test-suitebeaset in the
MRMC HOVE DI R/ test/settings.cfg
configuration script. These parameters are subdividedwugroups:

General settings
e MRMC HOVE_ DI R - The absolute name of the MRMC distribution directory.

e VRMC- The location of the MRMC binary. This setting does not neeldd changed if
MRMC_HOVE DI Ris set correctly. Note that, when running MRMC on Windowg, th
binary name should be setto nt. exe.

e VALGRI NG HOVE - The absolute path to theal gri nd executable ABFH"0g].
It is only required if tests are run under th@al gri nd option. Note that in this
case MRMC should be first recompiled with th€0 - ggdb - g options, which are
available inVMRMC HOVE DI R/ makefi | e. def.

e VALCGRI ND_.LOG.FI LES_DI R- The absolute name of the folder for storilog filed
produced byal gri nd.

e EXTRA_VALGRI ND_PARAM- Extra options fowval gri nd.

Performance-test settings The performance part of the test suite was developed for
Linux platform only. It is not proven to work under WindowsMac OS X.

e PRI SM- The absolute path of the PRISMIIP0Z command line executable. This
setting is required for generating performance-test nsodel

e TMPDI R- This setting should point to a local directory, which wié bsed for storing
generated models.

e YMER - The absolute path of the Ymerdu05H command line executalfle
e VASTA JAR - The absolute path of the VESTAJ/A04] jar file?.

e NUMBER OF PERFORMANCE REPETI TI ONS - The number of times every perfor-
mance test is going to be repeated. If set to zero, no “elapsed statistics is col-
lected. At the same time the functional testing and the mgrueage statistics are
collected only for theé unpi ng sub suite.

e M LLI SECONDS - The time units of the “elapsed-time” plots.
e KI LOBYTES - The data units of the “memory-usage” plots.
e CONFUNI T- The data units of the “confidence” pléts

e PERFORMANCE TEST_TI MEQUT _SECS - The timeout (in seconds) for each perfor-
mance test invocation.

2This setting is required only for the nul at i on sub suite.

2.4. Common test-suite files

One of the most common kind of files in the test suite isttkst _| i st file. These files
contain lists of names which always correspond to the narhdsecame directory’s sub-

folders. These names should be interpreted either as t@ssar test sub-suite names.

Modifying t est | i st files one can easily prevent tests or sub suites from runrimg.
order to do so, just place the “#” symbol on the line with th& {guite) name. For example,
consider. / functional tests/test 1ist — the list offunctionaltest sub suits. This file
contains the following data:

R R
TEST LI ST
HHHAHHHHRHHHH

#Tests for Discrete-tinme Markov Chains
dt nc

#Tests for Continuous-tine Markov Chains
ctnc

#Tests for Discrete-tinme Markov Reward Model s
dtnrm

#Tests for Continuous-tinme Markov Reward Model s
ctnrm

#Tests for Continuous-tinme Markov Deci sion Processes
ct mdpi

The following modification of this file excludes tli# nc andct ndpi sub-suites from the
test runs:

BRFEHARHERAR
TEST LIST
RHARH AR R

#Tests for Discrete-tine Markov Chains
#dt nc

#Tests for Continuous-tine Markov Chains
ctnc

#Tests for Discrete-tine Markov Reward Model s
dtntrm

#Tests for Continuous-tinme Markov Reward Mbdel s
ctnrm

#Tests for Continuous-tinme Markov Decision Processes
#ct ndpi

The test suite contains various permanent files, desigrdatdtis or that purpose. The
most common file-name extensions of these files are:

e *.info — test case description *.rew — MC state rewards

e *.input— MRMC commands e *.rewi — MC impulse rewards
e *tra — Markov Chains (MC) e * golden— expected MRMC output
e *lab — MC labeling e *.zip — contain *.golden files

During test runs, the test suite produces various tempdilasy The most common file-
name extensions of such files are listed below:

e *.0ut— actual MRMC output e *.results— time statistics
e * diff —di ff *.out *.golden e * memstat- memory statistics

It is important to note thatt.out files are generated during every test run. If there is
no difference between thfeout and the correspondiriggoldenfile then the former one is
deleted. If some difference was detected then it is storafiart.diff file and the test is
marked as failedHAI L) in the test script output, otherwise it is marked as pasBA&%$).

To put it in a nutshell, if a test fails then its directory caints two new files*.out - an
actual test output.diff - a difference between thfeout and the*.goldenfile. Note that,
Typically beforedi f f is applied, thef.out and*.goldenfiles are preprocessed bysad
script that filters out run-dependent data. That is why tesyt.diff files contain only the
relevant difference between expected and actual outputs.

Fore more details about the test-suite files, consider mgadhaptersgl to 5.

3. Managing tests

In this chapter we briefly introduce the test-suite funcaidy by explaining how it can be
invoked, stopped and cleaned. We also explain how to irgetpst-run outputs. For more
information about internal, functional and performancdeve refer to Chaptersand>.

3.1. Running

In this section we are going to discuss two thingg: how the MRMC test suite can be
invoked,; (i) how to interpret test-run outputs. Since the test suite ha@asynpurposes, we
split our explanations in several parts. First, we discuss the test suite and its sub suites
can be run. Then, we explain how the output of ithiernal andfunctionalsub suites has
to be interpreted. In the end, we separately talk about tiyeuts of thel unpi ng- and
si mul at i on- performancesub suites.

The only valid way for invoking MRMC testing is to use the gtri

MRMC HOVE DI R'test/test all.sh
When run without any parameters, this script produces th@nfimg output:

>>test _all.sh
Usage: MRMC HOVE DIiR/'test/test_all.sh [options]
Opti ons:

-all: run all tests

-internal: run internal tests

-functional: run functional tests

-performance: run perfornmance tests

-valgrind: turn on Valgrind (nrnc has to be

conpiled with '-Q0 -ggdb -g’ options)

From this it becomes clear that all available MRMC tests carum by using:
>>test _all.sh -all

whereas for runningunctionalandperformancesub suites we should use:
>>test_all.sh -functional -performance

A distinctive feature of the test suite is tHainctionaland performanceests can be run
under theVal gri nd profiling tool [ABFH"08]. This feature is very useful for MRMC
developers, because it allows to track memory leaks andsessun order to rufunctional
tests undewal gri nd one has to:

1. Erase all MRMC binaries, by runnimmke cl ean in the MRMC_HOVE_DI R folder.
2. Modify the theMRMC HOVE DI R/ nakefi | e. def file:

a) CommentCFLAGS += - 3
b) Uncomment#CFLAGS += -0 -ggdb -g

3. Compile MRMC binaries, by runningake al | in the MRMC_HOVE DI Rfolder.

4. Invoke thefunctionaltest suite by running:
>>test_all.sh -valgrind -functional

The profiling-log files (one for each test) will be locatedlie folder, defined by the
VALGRI ND_LOGFI LES DI R

variable inMRMC_ HOVE DI R/ t est / set ti ngs. cf g.
Note that:

e Val gri nd can be supplied with various options by means of the scntigable:
EXTRA_ VALGRI ND_PARAM

e Our test scripts are designed Mal gri nd version3.3.0 or higher.

3.1.1. Internal and functional tests
An example output of theaternal andfunctionattest run looks as follows:

>>test _all.sh -internal -functiona

R R R R SRR E RS SRR SRR SRR EREEEREEEREEEEEEREEEREEEREE SRR EREEEEEREEREREEEEE RS

* NOTE: Running Internal Tests

*

R E I S R I I R R S I R I R I I R S R I R R R R I O

* -
sanmpl e _Od. PASS
sanpl e_02. . .. PASS
sinmulation_utils _O1.... PASS
test _lab reader......... PASS
test _label PASS
LSt _OMBga. . . o FAI L
LeSt _SparSe. PASS

R R I S R I I R S O R I R I I R S R I R S R R S O O

* NOTE: Runni ng Functional Tests

*

R R R R SRR E R SRR SRR EEREEEREEEREEEEEEEEREEEREEEREE SRR EREEEEEREEREEEEEEE RS

* . ldtnc/pctl/syntax:

pctl _general _input _O1....... PASS
pctl _general _input _02....... PASS
pctl _general _input_03... PASS

R R R R SRR SRR SRR EREEE R R SRR EEREEREEEEEEREEEREEEREE SRR EREEEEEEEEEREEEEEEEEEE

* _/dtnt/pctl/operators/basic:

pctl _basic 01, PASS

R R R R SRR E RS SRR R R R R EEREEEREEEEEEEEREEEREEERE SRR EREEEEERE SRR EEEEE RS

* _/dtnc/pctl/operators/long run

pctl _steady state 01........ FAI L
pctl _steady _state 02....... PASS
pctl_steady _state 03....... PASS
pctl _steady state O04........ i, PASS

Here, all tests except farest _onmega (internal tests) andpct| st eady state 01
(functionaltests), pass. In order to find out what caused the test fajlome can consider
checking ther.diff and/or*.out files of the corresponding tests. The location of these fles i

defined by the test-run output.

We already know (see Secti@n?) thatinternal andfunctionaltests are located (respec-
tively) in thei nt er nal _t est s andf uncti onal _t est s sub folders of the directory:
MRMC HOVE DI R/ t est /. The remaining path to the test location can be constructéd w
the test name and the sequence of sub-suite names leadimgdo/én test. This name se-
guence is provided in the test-run output right before eathssiite tests are executed. For
thet est _.onega test, the name sequence is indicated by the output: ¥ ” which means
thatitis empty. Forthect | st eady st at e_01 test, the sequence is given by the output:
“* _/dtnc/pctl/operators/longrun:”. Therefore, the.out and*.diff files for
these two tests are located in the following directories:

./linternal tests/test_ onega
./functional tests/dtnc/pctl/operators/long_run/pctl_steady state 01

3.1.2. Lumping-performance tests

Performance tests fdrunpi ng are designed to compare model-check time and memory
consumption when running MRMC (on the same models, withdngesinput parameters and
formulae to verify) in a simple model-checking mode, in ffarla-independent” lumping
mode, and in “formula-dependent” lumping mode. Note that the latter two the model-
check time includes time required for lumping.

A typical output of thel unpi ng sub suite is given in Figurd.1 Here, we run perfor-
mance testing on the well known Randomized Mutual Exclugiore) case study{Z84.
This study provides an algorithm guaranteeing that¥gprocesses trying to access a criti-
cal section, at any timethere is at most one process in the critical-section phadewasry
process can eventually enter the critical section. fTime test is located in:

.l performance_tests/| unping/ dtnc.lunping/rme

This location can be easily deduced from the liGds 8 of Figure3.1 Note that, the me
test consists of the following test cases:

nT nc _RANDOM ZED_NO4, ... ,nT nt _RANDOM ZED_NOG.

These correspond to the model paraméfdreing equal tat, . . . , 6.

Execution of every unpi ng test consists of running each of its test cases anddbkan
erating overall statisticsExecution of every test case consists of several staggerating
a mode] testing MRMC functionalitygathering statisticsBelow, we briefly introduce all of
these stages using (to a certain extent) the output proundedjure 3.1

10

>>test _all.sh -performance

R R R R SRR E RS EEREEEEEREEE R EEREEREEEEEREREEREEEREEEEREEEEEEEEEEEERE SRR EREES

* NOTE: Runni ng Perfornmance Tests

*

Each test will be repeated ' 10’ tines.

OCO~NOOITAWNPE

- lunpi ng

- dtnc_I unpi ng

-- rnme:

nT nc_RANDOM ZED_NO4:

10 CGenerating the nodel DONE
11 Functional test:
12 rme01:
13 ntnc_RANDOM ZED NO4. pctl.rnme0l: +................. PASS
14 nT nc_RANDOM ZED _NO4. pct !l . -ilunmp. rme0l: +.......... PASS
15 nr nc_RANDOM ZED NO4. pct!l.-flunp.rne0l: +. PASS
16 Per f ormance test:
17 rme0l: O: +++ 1:+4++ 2: +++ 3: +++ 4: +++ 5. +++ 6: +++ 7 +++
18 8: +++ 9: +++ DONE
19 nT nc_RANDOM ZED_NOS5:
20 Generating the nmodel DONE
21 Functional test:
22 rme01:
23 nr nc_RANDOM ZED NO5. pctl.rnme01: +................. PASS
24 nt nc_RANDOM ZED NO5. pct!l.-ilunmp.rme0l: +. PASS
25 nTr nc_RANDOM ZED _NO5. pct!l.-flunp.rne0l: +. PASS
26 Per f ormance test:
27 rme0l: O: +++ 1:+++ 2:+13

Figure 3.1.: An example run of tHeunpi ng sub-suite output.

Generating models

First, for each test case, the MRMC model is generated fraPRISM model. In every
test-run output this stage is indicated by:

CGenerating the nodel DONE

See for example line$0 and 20 of Figure 3.1 These lines contain model-generation
statements for the test casas nt _RANDOM ZED_NO4 and nt nt _RANDOM ZED_NOS.
The PRISM’s*.log.out file, containing data about the model-generation processamed
after the test case, and is located in the test-case foldgr,fernt nt _RANDOM ZED_NO3
itis:

./ rme/ nr nc _RANDOM ZED_NO3/ nr nrc _RANDOM ZED_NO3. pri sm | og. out

The generated MRMC models are stored in the folder definech&y¥PDI R variable
of the./test/settings. cfg script (see Sectiol.3). It is desirable that this folder
is located on the hard drive of the machine that runs the.t€iserwise, test runs can be
affected by the network-speed fluctuations.

11

Jrme/optionldist |./rme/inputlist
pct | rme0l1. i nput

pctl -ilunp

pctl -flunp

Table 3.1.: Thepti on_li st andi nput | i st files of ther e test.

Testing MRMC functionality

Functional testing is performed on every test-case modelthve same input data as for the
further performance testing. The reason to do so is thabyb@lerformance testing, we want
to be sure that MRMC produces correct results.

For every test (such asve) the list of used MRMC command-line parametésslocated
in theopti oni st file and the list of*.input files, containing MRMC commands and
verification formulaé, is located in theé nput _| i st file.

For ther e test, these files are:/ rme/ optionlist and./rne/input _|ist.
The content of the files is given in Tabkl For every test case, we run MRMC on all
various combinations of command-line options and the misen in these files. This is

reflected in lined 2—15 and22-25 of Figure3.1

Note that, when running functional part of thenpi ng performance tests, the output
“- " indicates that the test run was terminated due to the tioté&-avhereas 4” indicates
that the run is terminated normally. Also, the test output cantain a line similar to the
following one:

nrnc_RANDOM ZED _NO5. pctl.rne01: +................. ??7?7?

This means that the test run is finished but the results drbeaitng analyzed. After a short
while, ???7? will change intoFAI L or PASS. The latter indicate whether the functional test
failed or passed.

Gathering statistics

For performance testing, every test case on every combmafiinputs is run several times.
The number of repetitions is stated in the very beginningeper f or rance-suite output,
see e.g. lin& in Figure3.1, and is defined by the

NUMBER_OF_PERFORMANCE_REPETI T1 ONS

variable of the. / t est/ setti ngs. cf g script. Each of performance runs is indicated
in thePer f or mance test: section of the test-case output, e. g. see lineand27 in
Figure3.1

For a better usability, our scripts report the time prog(essenths of a second) of every
test run. For instance, ling7 in Figure 3.1 indicates that the current test run has been be-
ing executed for abouit.3 seconds. Note that, the reported time is not exact. The ¢inte-
script wakes up every.1 second in order to check for the possible time-out and t@cbthe

1See Section.1 of the MRMC manual.
2See Chapters and7 of the MRMC manual.
3See Sectio.3for more details.

12

———————————— Col l ecting statistics and preparing data ------------
nr nc_RANDOM ZED_NO3:

OCO~NOOITAWNPE

rme0l1:
nr nc_RANDOM ZED NO3. pctl.rme01 DONE
nr nc_RANDOM ZED NO3. pctl.-ilunmp.rnme0l DONE
Converting the statistics into the gnuplot data files:

10 rmeOl. nenory. dat:
11 Readi ng data file: rme.param
12 Readi ng data file: rme0l.pctl.nvsz. nenory. statistics
13 Reading data file: rnmeOl. pctl.nrss. menory. statistics
14
T e I
16 Witing gnuplot-data file: rnme0l. nenory. dat
17 Gener ati ng:
18 rme0l. menory. nvsz. eps
19 rme0l. menory. nrss. eps
20 rme0l. nenory. avsz. eps
21 rmeOl. menory. arss. eps
22 --==WE ARE DONE==- -
23

Figure 3.2.: Producing statistical results for thee test.

memory-usage data. This script also prints the time-pssgrdormation. Therefore, the ac-
tual time interval between the time-sampling momené Isast0.1 second. One might want
to take this into account when setting the valu®BRFORMANCE TEST _TI MEOUT _SECS.

Generating overall statistics

For a given test, after all performance-test runs are finistiee statistical data is collected
and the results are stored in the from*adps plots and*.dat (text) files. The latter ones
contain statistical data used to produce the corresporidaps plots. Figure3.2 shows a
part of the statistics-generation log for thee test. In this output, lines8 to 21, one can
see that the overall memory statistics is represented byplots:

e rnme0l. menory. nvsz. eps — maximum used virtual-memory sizeNSZ),
e rme0l. menory. nTrss. eps —maximum used resident-set SiMRSS),

e rme0l. menory. avsz. eps — average used virtual-memory siZ8/SZ),

e rnme0l. nenory. ar ss. eps — average used resident-set SIiAR$S).

Another type of plot we produce is the “model-check” timdistacs. For the ne test it is
present in the me01. per f or mance. eps file. Note that, the resulting statistical data is
always stored in the test directory, e. d.| unpi ng/ dt nc_| unpi ng/ r e for the case of
ther e test.

For more details about the resulting-statistics files aersieading Sectiof.1

13

3.1.3. Simulation-performance tests

Performance tests fagi nmul at i ons are designed to compare simulation-based model-
checking algorithms implemented in MRMC, Ymer and VESTAr&]ave collect four types
of statistic:

¢ “model-check time” — the same as for thanpi ng tests.
e “memory-consumption” — the same as for thenpi ng tests.

e “actual confidence levels” — the % of correct answers, preduay the tools when
model checking given properties on given models.

e “number of used observations” — the number of states sanmpledier to verify vari-
ous model-checking formulae.

Note that, all the test models and tool parameters were maeet@ be equivalent. For
more details, read Sectianl of [Zap0g.
A typical output of thesi mul at i ons sub suite is given in Figur@.3. Here, we run per-

1 >>test_all.sh -performance

2 EE IR S Sk b O S Rk S kS kS kR Ik S I I
3 * NOTE: Running Performance Tests

4 *

5 Each test will be repeated '3 tines.

6 - sinulations

7 - ctnc

8 -- cps:

9 CYCLI C_POLLI NG_NO3:

10 Generating the nmodel: DONE

11 Sinmul ating the test:

12 cps01: O: mry+y+v+ 1: mty+y+v+ 2: mry+y+v+ DONE
13 cps02: O: mry+y+ 1:mry-y+ 2: mry+y+ DONE

14 cps03: O0: mrv+ 1: mtv+ 2: mrv+ DONE

15 cps04: O0:m+ 1: m+ 2: m+ DONE

16 CYCLI C_POLLI NG_NO6:

17 Generating the nodel: DONE

18 Simul ating the test:

19 cps01: O: mry+y+v+ 1. mty+y+v+ 2: mry+y+v+ DONE
20 cps02: 0:my+y- 1:mty+y+ 2: m+y+y- DONE

21 cps03: 0: mtv+ 1: mrv+ 2: mrv+ DONE

22 cps04: O:m+ 1: m+ 2: m+ DONE

23 C

Figure 3.3.: An example run of thea nmul at i ons sub-suite output.

formance testing on the well known Cyclic Server Polling t8ys Cps) case study![90,
YouO05h You055 HKMKS00, SVA04, YKNPOG, YSO0(. The case study describes a polling
system consisting aV equivalent stations and a server. Each station has a simggsage
buffer and the stations are attended by a single server iclee @rder. The server starts by
polling the first station. If this station has a message irbitfer (busy), the server starts
serving the station. Once the station has been served har# tvas no message in the buffer

14

(idle), the server start polling the next station. After pollingsdations, the server returns
to polling the first station and thus beginning a new cyclee phblling and service times are
exponentially distributed with rates = 200 andyx = 1. The arrival rate of messages at a
station is equal for all stations and is exponentially distied with rate\ = £-.

Thecps test is located in:

.l performance_tests/sinmnulations/ctnt/cps

This location, the same way as it was done in Secidn2 can be easily deduced from the
output provided in Figur&.3. Note that, theps test consists of the following test cases:

CYCLI C_POLLI NG.NO3, ... ,CYCLI C_.PCLLI NG.N18.

These correspond to the model paraméfer {3, 6, 9, 12, 15, 16, 17, 18}.

Execution of everysi mul at i ons test consists of running each of its test cases and
then generating overall statisticsExecution of every test case consists of several stages:
generating a modelgathering statistics Below, we briefly introduce all of these stages
using (to a certain extent) the output provided in FigBu®

Generating models

The model-generation part of the mul at i ons tests is the same as for theinpi ng
tests. Note that, the MRMC models are generated from the MRiSdels. Ymer directly
accepts PRISM models and VESTA uses its own input modelsweee made sure to be
equivalent to the used PRISM models.

Gathering statistics

The parameters influencing the number of repetitions of @éeshrun and its timeout are
the same as for theunpi ng-performance tests. One of the main differences from the
| unpi ng tests is that we do not just run MRMC but also Ymer and VESTA.tRe rest,
we still allow for having tool runs on different commanddiptions (per tool) and inputs
(per test).

Let us consider the example run in Figld&. It is easy to see, ling, that every tool run
(on a given test case, with selected command-line optiodsrguts), will be repeated
times. Moreover, for every test case, after the model is igeéee (e. g. linel0), the sim-
ulation tests are invoked. These tests are performed in aifypait” (csp01, csp02,
csp03, andcsp04) manner. For example, on linE2 we can see that for the test case
CYCLI CPOLLI NG.NO3 on the inputcps01 we perform three repetitions marked from
0 to 2. In each repetition we consequently run MRMC — denoted bydtter “ni, Ymer
— denoted by the lettery” and VESTA — the letter V”. Ymer is run twice because the
command-line options for the first and second invocatiofisrdiUnlike for| unpi ng tests,
the “+” output indicates that the tool produced proper model-kimecresults, otherwise we
have “ ”. The latter check is required for collecting the “actuahfidence levels” statistics.

Remember that every input, e.@ps01, contains a particular formulae that is to be model
checked. In our case, we verify CSL formulae but not all ofdbesidered tools support this
logic to the full extent. Thus, it is possible that on a pauiée input we can only run some
of the tools, but not all of them. For example, it is the casthhe inputcps03. For this
input we can only run MRMC and VESTA, but not Ymer.

15

Generating overall statistics

For a given test, after all performance-test runs are fiistiee statistical data is collected
and the results are stored in the from*adps plots and*.dat (text) files. The latter ones
contain statistical data used to produce the corresporidaps plots. Figure3.4 shows a
part of the statistics-generation log for tbps test. In this output, line8, 27, 37, and40
divide the output into four parts and show in which order ttad¢istical data is generated. For
every input namé NP and a set of tools run on this input we produce four plots:

e | NP. menory. nvsz. eps — the “memory-consumption” statisticeN(SZ only), the
same as for theunpi ng tests.

e | NP. perf or mance. eps — the “model-check time” statistics, the same as for the
| unpi ng tests.

e | NP. confi dence. eps —the “actual confidence levels” statistics.
e | NP. sanpl e. eps —the “number of used observations” statistics.

The resulting statistical data is always stored inghat i sti cs sub folder of the test
directory, e.g. / si mul ati ons/ ct nt/ cps/ stati sti cs forthe case of theps test.
For more details about the resulting-statistics files atersieading Sectiof.2

3.2. Stopping

The internal- and/or functional- test runs can be termphatesimply pressingtrl-C in the
console where they were invoked. The performance tests ieaM® in the background.
Therefore, in order to halt these tests, it is not enoughrtoiteate the test scripts by press-
ing Ctrl-C. If performance tests are to be stopped,MRC HOVE DI R/ t est / st op. sh
script shall be used. Just run it during the performanceetescution from another console.
A typical output of this script looks as follows:

>> st op. sh

+H++tttttttHrt++ Stoppi Ng tests ++t+ttbbbt bt
* |teration 1: Sone unstopped processes detected.
1. Killing the main script, PID 18525

2. Killing the test scripts, PID: 27071

3. Killing the performance test scripts,

PID: 27373 27088 27083 27077

The MRMC processes is/are not running

The YMER processes is/are not running

Killing the JAVA processes, PID: 5081

Killing the PRI SM processes, PID: 5546

No gk

* |teration 2: Everything is stopped.
+++++++++++++++++++++ Done +++++++HHHHHHHHHE

Note that, this script will terminate all Java applicati@msl/or MRMC, PRISM instances
running on the same machine. Yet, we assume that this serigtfficiently safe, since
performance testing should be done on a stand-alone madadeated specifically for the
testing purpose.

16

———————————— Col | ecti ng PERFORMANCE statistics and preparing data ------------
CYCLI C_POLLI NG_N03:

cpsO1:
CYCLI C_POLLI NG_NO3. cpsOl1. nrnc. comon DONE
CYCLI C_PCOLLI NG_NO3. cpsOl.ymer.common DONE
CYCLI C_POLLI NG_NO3. cpsOl.yner.--pestimate DONE
CYCLI C_POLLI NG_NO3. cps0l1. vesta.comon DONE
cps02:

Converting the statistics into the gnuplot data files:
statistics/cpsOl. perfornmance. dat:
Readi ng data file: cps.param
Readi ng data file: statistics/cps01l/cpsOl. nrnc. common. performance. statistics
Readi ng data file: statistics/cpsOl/cpsOl. ynmer.common. performance. statistics
Readi ng data file: statistics/cpsOl/cpsOl.yner.--pestinmate. performance.statistics
Readi ng data file: statistics/cpsOl/cpsOl.vesta.comon. perfornmance. statistics
Witing gnuplot-data file: statistics/cpsOl. perfornance. dat
Generating:
statistics/cpsOl. perfornmance. *. eps
--==W\E ARE DONE==- -

------------ Col | ecting MEMORY statistics and preparing data ------------
CYCLI C_POLLI NG_NO3:

cps01:
CYCLI C_PCOLLI NG_NO3. cpsOl. nrnc.common DONE
CYCLI C_POLLI NG_NO3. cpsO1. yner.comon DONE
CYCLI C_POLLI NG_N03. cpsOl.yner.--pestimate DONE
CYCLI C_POLLI NG_NO3. cps01. vesta.comon DONE
cps02:

Figure 3.4.: Producing statistical results for tes test.

3.3. Cleaning

Some test runs result in temporary files, such.ast, *.diff, and*.statisticsfiles, and etc.
These files can be automatically erased by executing:

MRMC HOVE DI R/'test/test/clean_all. sh

When using this script, note that:

e *.epsand*.dat files produced by performance tests are not removed, so shéing
data is preserved.

e In order to run performance test without deriving resultsrirthe previous runs run-
ningcl ean_al | . sh is compulsory!

e The temporary files are only removed for “enabled” tests, the test suites and test
that are not commented out in the correspondiegt _| i st files.

17

4. Internal and functional tests

In this section we briefly overview the structure of the intdr and functional-test sub suites.

MRMC HOVE DI R/'test/internal tests Stores tests for the MRMC core. These
tests are C source files that perform unit testing of somee®MRMC components. The
structure of this sub suite is similar to the structure offtirectional sub suite.

MRMC HOVE DI R/ t est/functional tests/ Stores tests for the MRMC interface
and the model-checking algorithms. The structure of thissstte is as follows:

e ./test |ist —thelistof tests

e ./test.sh—runstestsfromest |ist

e ./ cl ean. sh —removes temporary files

e ./ dt nt/ —tests for Discrete Time Markov Chains

e ./ ctnc/ —tests for Continuous Time Markov Chains

e ./ dt ntnl —tests for Discrete Time Markov Reward Models

e ./ ctnrnl —tests for Continuous Time Markov Reward Models

e ./ ctmdpi/ —tests for Continuous Time Markov Decision Processes
The test suite also contains several supplementary files:

e ./ out 2gol den. sh —substitutes th& goldenfiles with the pre generatédbut files
for the given list of tests. Has to be invoked asit 2gol den. sh test |i st.

e ./ sed. rul es —containsed rules for extracting meaningful data from thgolden
and*.out files, before applyingli f f .

e ./ pf. sh — performs filtering for*.goldenand*.out files. Also, invokedi ff and
reportsPASS/ FAI L. This script is called front est . sh.

18

5. Performance tests

At present, the performance test suite of MRMC:

MRMC HOVE DI R/t est/ performance_tests

has the following structure:

./ test |ist —the list of tests suites

./ test.sh—runs test suites fromest _| i st

./ cl ean. sh —removes temporary files

.I'scripts/awk/ — scripts &wk) for processing statistical data
./Iscripts/shel |/ —common scripts used for gathering statistics

./ scripts/sed/ —scripts §ed) required for extracting statistical data
./ scri pts/bin/ —contains the pre-compiled bash shell birtary

./ scripts/gcc/ —supplementary programs needed for test runs

./ I unpi ng/ —the test suite for the bisimulation (lumping)

./ simul ati ons/ — the test suite for the simulations-based model checking

Remember that the performance test suite consists of twelstés, namelyt unpi ng —
tests for bisimulation minimizatior{KZJ07], andsi mul at i ons — tests for the discrete-
event simulation engineZpp0{. Although sharing some common scripts, located in the
./ scripts/ directory, these sub suites are quite different. The fororex is simpler
and therefore we will first discuss its structure, how itS@@nance tests are run, and what
statistics is produced. Then, we extend our explanatiotisettatter sub suite.

5.1.

Lumping-performance tests

An approximate structure of tHeunpi ng sub suite is as follows:

. I scripts/awk/ —awk scripts for computing reduction factors and comparing the
probability values with the given error bound

twith disabled printing of messages about killed processes.

19

./ scripts/sed/ —sed scripts which allow to remove unnecessary information
from the MRMC output

./ scripts/shel |/ — shell scripts for: running tests, coordinating the stigis
generation, and other supplementary scripts

e ./ dt nc_| unpi ng/ — the sub suite with tests for DTMCs
e ./ ctnc | unping/ —the sub suite with tests for CTMCs
e ./ dt nt ml unpi ng/ — the sub suite with tests for DMRMs

e ./ ctnrml unpi ng/ —the sub suite with tests for CMRMs
When thd unpi ng-performance tests are run they produce two types of statist
e Model-check time’ — based on the “elapsed-time” output of MRMC:

— *_ performance. stati stics — raw statistical-data files. A name of each
file is formed from the input-file name plus the command-lipgans of MRMC.

— *. performance. dat — post-processed statistical data files which are used
with gnuplot scripts to generate performance plots.

— *. per f or mance. eps —the performance plots. These files are generated from
the corresponding. per f or rance. dat files.

e Memory Consumption — based on the results provided by fiee utility:

— * TYPE. nenory. stati stics — raw statistical-data files. A name of each
file is formed from the input-file name plus the command-lipgans of MRMC.
HereTYPE € {muvsz, mrss, avsz, arss}.

— *. menory. dat files — post-processed statistical data files which are ugthd w
gnuplot scripts to generate memory-consumption plots.

— * . TYPE. nenory. eps files — the memory-consumption plots. These files are
generated from the correspondihgnenor y. dat files.

The memory-consumption statistics is based on the outpuhefstandards utility
(Linux) which samples the memory usage of MRMC process apmately every0.1 sec-
ond. This sampling is done only during the functional-test pf each performance test.

Note that, the /| unpi ng/ scri pts/shel | /test suite. sh script, used in per-
formance testing, employs a pre-compiled bash interpreteated in the

MRMC_ HOVE DI R/ t est/ performance_t ests/scripts/bin/bash

directory. The reason for using this binary is that, in caka test-case timeout, MRMC
execution is terminated by invoking the | | command. If using a standard shell binary,
this procedure results in printing an unwanted text to thesote. Since such bash output
breaks the structure of the test-script output, we use thgifiad version of bash.

In cases when it is undesirable or impossible to use the neddsfiell binary, one has to
substitute the first line dfest _sui t e. sh in the following manner:

”

Change#!../../../scripts/bin/bash -u”into“#! bash -u”.

20nly when the value diUVBER OF _PERFORNMANCE REPETI TI ONSiis > 0, see Sectio.3

20

5.1.1. Test structure

Let us consider theunpi ng-test structure, using the Workstation Cluster testq]) as an
example. Thewscl testislocated inthe/ | unpi ng/ ct nr ml unpi ng/ wscl directory.
To prevent this test from being executed one can modifyt gt _| i st file located in the
ct nt ml unpi ng folder. Thewscl test’s directory has the following structure:

e ./ nr nt WORKSTATI ON.CLUSTER NXX/ — the test case directory. It contains a
test-invocation script and golden files. The test-case (MRIvhodel is generated
fromwscl . smandwscl . csl , with the model parametéy = X X.

e . /wscl . sm-the PRISM model of Workstation Cluster.
e ./ wscl . csl —the PRISM property file containing the model labeling.

e . /input |ist —thelistof availablé . i nput files. Here, we have only one input:
wscl 01. In principle, it is possible to define several input files floe givenwscl
model and to use them for evaluating performance of MRMC aorrse different
model-checking properties.

e ./wscl 01. i nput — the MRMC input file. Each tests can have several inputs,
each of which is a set of MRMC command-prompt commands, tichide a model-
checking property. Thescl 01. i nput file contains the time- and reward-bounded
until property and also thgui t command which igbligatoryfor any* . i nput file.

e ./option.list —thelistof command-line options MRMC should be invokedwit
For the samevscl O1. i nput file, each of theopti on_l i st file lines is used to
form the MRMC command-line parameters. In cases€l , the file’'s content indi-
cates that MRMC should be run three timésst in the CSRL mode without lump-
ing; secondwith the formula-independent lumpinthird with the formula-dependent
lumping. Note that, any changes done to tipgt i on_| i st file must be consistent
with thenul ti pl el i st file.

e ./input.data.fil es—thelistof MRMC input files. Necessary, because differ-
ent models (e.g. CTMC vs. CMRM) require different number d&@MC input files.

e ./multiplelist —thenumberofTotal Elapsed * Tinme * :”linesin
the MRMC output. These numbers are related (line wise) toofiteons from the
option_i st file. Here,1 means that if MRMC is run, e. g. with tfessr | orcsr |
- f 1 unp option, there is just one “elapsed-time” output, whereafe. g. forcsr |
- i | unp option, indicates that there are two. In case ofthé unp option, the first
output corresponds to the lumping time and the second to duehkthecking time.

e ./ wscl . par am- the values ofV with which MRMC models are generated from
the PRISM model. This file determines theaxes values on the generated statistics
plots (produced usingnupl ot). After a test execution thescl . par amfile values
are copied into the first column of the (generatedat file.

e . /wscl 01. perfornmance. gnupl ot —thegnupl ot template for the “model-
check time” statistics. This file contains several “dummgimnes, as:

21

I NPUT, TIMELUNIT, MN, MAX

These are automatically substituted with the actual valhyethe statistics script. If
any changes are to be done to this file, they must be conswsiitrthe changes in the
optionli st file.

e ./wscl 01. nenory. gnupl ot — the template file for the memory-consumption
statistics. This file is similar to/ wscl 01. per f or mance. gnupl ot .

It is important to note that:
¢ If atest case fails theout and*.diff files are placed in the corresponding directory.

e The test-case golden filesdolden) are stored in th&.zip archive located in the test-
case directory. These files are automatically extractethguhe functional part of
testing.

e The PRISM output, produced while generating MRMC models, lma found in the
* prism.log.outfile of the corresponding test-case directory.

Further, we discusslaunpi ng-performance test’s structure and its statistical outputs
mode detail.

5.1.2. Test statistics
Thel unpi ng-performance tests generate two types of statistics by snafathe
./l unping/ scripts/shell/statistics.sh
script. Below, we discuss the resulting-statistics filesl@tails. Note that, these files are
placed in the root of each test’s directory.
Model-Check Time Statistics:

e *.performance.statistics Contain average model-check times for the test test-cases
The file name is formed by theinput file name plus the command-line options of
MRMC from theopti onli st file. For example, in this particular case one may
expect the following statistic files:

—wscl 01. csrl . perfornmance. statistics
—wscl O1l.csrl.-ilunp. performance. statistics

—wscl 01. csrl.-flunp. performance. stati stics

Each of these files contains one column of values. Let us skskcaw these files are
produced. For the "wscl” test we have 7 test cases:

nT Nt _WORKSTATI ON.CLUSTER.NO1 , ..., nT nt_WORKSTATI ONLCLUSTER_NO7

In each directoryTEST_CASE_NAME (after the test-case is finished) we have the fol-
lowing files:

22

— TEST_CASE_NAME. csrl.wscl Ol.results
— TEST_CASE_NAME. csrl . -ilunp.wsclOl.results
— TEST_CASE_NAME. csrl . -flunp.wsclOl.results

which contain “elapsed-time” information produced by MRM@ the predefined
number of test-case repetitionSIUVBER OF PERFORMANCE_REPETI TI ONS (see
Chapter2.3). Then, for the test casa nt WORKSTATI ON_.CLUSTER NO1 the aver-
age values are computed for each file:

— nr nt _WORKSTATI ON.CLUSTER.NO1. csrl .wscl Ol.resul ts
— nr nc _WORKSTATI ONLCLUSTER.NO1. csrl.-ilunp.wscl Ol.results
— nr mc _WORKSTATI ONLCLUSTER.NO1. csrl . -flunp.wscl Ol.results

and are (respectively) placed to be the first row elementseof t

—wscl O1. csrl.performance. statistics
—wscl O1l.csrl.-ilunp. performance. statistics
—wscl O1. csrl.-flunp. performance. stati stics

files. Further, the average values fornc _WORKSTATI ON_.CLUSTER_NOZ2 are com-
puted and placed into the second rows, and etc. For mordista!:

./l performance_tests/scripts/awk/ average. awk.
* performance.dat- This is the input file for thé.performance.gnuploscript. The
file is formed by placing the columns from tfigoaram and*.performance.statistics
files parallel to each other. Evetynput file results in its owrt.performance.dafile.
Forwscl , we only havewscl 01. per f or mance. dat a. For more details see:

./ performance_tests/scripts/awk/ arrange._t abl e. ank.

* performance.eps Contains the plot for the data from the the correspondidagta
file. In case ofascl test we obtain:

wscl 01. per f or mance. eps

The time units, used when generating performance statistie defined by the value of the
M LLI SECONDS variable (see Chapter.3).

Memory-Consumption Statistics: Before going further, let us note that for the mem-
ory statistics we collect the following data, based on thgwouof the standargs util-
ity [DCO3:

e VSI ZE (Virtual memory size) — The amount of memory the process iisgusThis
includes the amount in RAM and the amount in swap.

23

e RSS (Resident Set Size) — The portion of a process that existhysigal memory
(RAM). The rest of the program exists in swap. If a computey hat used swap, this
number will be equal t&SI ZE.

Further we assume thalYPE is one of:
e Mvsz — The results for the Maximum measurésll ZE
e nr ss — The results for the Maximum measurnegS
e avsz — The results for the Average measukésl ZE
e ar ss — The results for the Average measuRSS5
Below, we describe data files produced during gatheringehiemory statistics:

e * TYPE.memory.statisticsThese files are constructed outohemstatest-case files.
In eachTEST_CASE_NANE directory (after the functional part of testing is finished)
we have the following files:

— TEST_CASE_NAME. csrl . wscl 01. nenst at
— TEST_CASE_NAME. csrl . -il unp. wscl 01. nenst at
— TEST_CASE_NAME. csrl . -fl unp. wscl O1. nenst at

Each of these files has three rows of two elements:

1. WSZ RSS - the pair ofps results with the ma¥x/Sz
2. VSZ NRSS - the pair ofps results with the maRSS.
3. AVSZ ARSS - the average over aISZ RSS pairs.

For more details on howVSZ andARSS are computed, see:
.l performance tests/scripts/awk/onthefly average. ank

As a result, for every test case we have the following files:

—*.csrl.TYPE nenory.statistics
—*.csrl.-ilunp. TYPE. nenory. statistics
—*.csrl.-flunp. TYPE. nenory. statistics

They are generated in such a way that each of them has onercoluRYPE values.
For example, IfTYPE = avsz then theAVSZ value from:

nr nt _WORKSTATI ON_.CLUSTER_NO1. csr |l . wscl O1. menst at

is placed into the first row ofiscl 01. avsz. menory. stati sti cs.
The AVSZ value from:

nr nt _WORKSTATI ON.CLUSTER NO2. csr |l . wscl 01. menst at

24

goes into the second row, and etc. For more details see:

./ performance_tests/scripts/awk/split_nmenory_statistics.awk

¢ *.memory.dafile — The input file for the correspondirignemory.gnuploscript. This
file is formed from the*.param plus *. TYPE.memory.statisticlles data. For each
.input its own. ${ TYPE.memory.dafiles are generated. In this example case it is
just:wscl 01. nenory. dat a. For more details see:

./ performance_tests/scripts/awk/ arrange_t abl e. ank

e * TYPE.memory.eps Contains the plot for the values from the correspondidgta
file. In case ofascl test we obtain:
—wscl 01. nvsz. menory. eps
—wscl 01. nrss. nenory. eps
—wscl 01. avsz. nenory. eps
—wscl 01. arss. nenory. eps
The time units, used when generating memory statisticsdefieed by the value of the
KI LOBYTES variable (see Chapter.3).

Additional information about thé unpi ng sub suite can be found in the comments of
the test scripts and other files.

5.2. Simulations-performance tests

An approximate structure of tred mul at i ons sub suite is as follows:

e ./scripts/sed/ —sed scripts that allow to filter tool outputs, for
TOOL € { MRMC, Ymer, VESTA }:
— TOOL. mai n. r ul es — removes unnecessary data from the outpai@adL .

— TOOL. resul t. rul es —removes all (remaining) data except for the model-
checking result.

— TOOL. sanpl e. rul es — removes all (remaining) data except for the number
of used observations.

— TOOL. ti me. r ul es —removes all (remaining) data except for the model-check
time.

e ./scripts/shell/ —shell scripts for: running tests, checking correctneshef
model-checking result, and coordinating the statisticsegation.

e ./scripts/shell/invoke.tool s - shell scripts for tool invocations.

e ./scripts/shell/extract data-shellscripts for extracting number of sam-
ples and model-checking time from the tool outputs.

25

e ./scripts/shell/generatestatistics — scripts used for generating all
supported types of statistics.

e ./ ctnt/ —the sub suite with tests for CTMCSs.

When thesi mul at i ons-performance tests are run, for every test and each of itgsnp
test-scripts produce four types of statistics:

e Model-Check Time— similar to the files produced by theinpi ng sub suite:

— *_ performance. dat — post-processed statistical data files which are used
with gnuplot scripts to generate “model-check time” plots.

— *. performance. eps — the “model-check time” plots, generated from the
corresponding . per f or mance. dat files.

e Memory Consumption — similar to the files produced by theinpi ng sub suite:

— *. menory. dat files — post-processed statistical data files which are usixd w
gnuplot scripts to generate memory-consumption plots.

—*. menory. nvsz. eps files — the memory-consumption plots, only for the
MWSZ statistics (Generated from the correspondingrenor y. dat files.).

e Actual Confidence Levels-the % of correct answers to the model-checking problem,
per tool and per test case. The % value is computed relatitreetoumber of the test-
case repetitions.

— *.confi dence. dat —post-processed statistical data files which are used with
gnuplot scripts to generate actual confidence-level plots.

— *_confi dence. eps — the actual confidence-level plots, generated from the
corresponding . conf i dence. dat files.

e Number of Used Observations- the average number of observations needed for ver-
ifying a given formula on a given test-case model (per toal s command-line op-
tions). The average value is computed relative to the nurobtre test-case repeti-
tions.

— *. sanpl e. dat — post-processed statistical data files which are used with g
plot scripts to generate number-of-used-observatiorts plo

— *.sanpl e. eps — the number-of-used-observations plots, generated fnem t
corresponding . sanpl e. dat files.

Note that, the resulting statistical data is stored inghat i st i cs sub folder of each test.
Further, we discusssi mul at i ons-performance test’s structure and its statistical out-
puts in mode detalil.

26

5.2.1. Test structure

Let us consider thei mul at i ons-test structure, using the Cyclic Server Polling System
test Cps) as an example. Theps test is located in the/ si mul ati ons/ ct nt/ cps
directory. To prevent this test from being executed one cadify thet est _| i st file
located in thect nt folder. Thecps test’s directory has the following structure:

e ./ CYCLI CPOLLI NG.NXX/ — the test case directory. It contains golden files, the
PRISM model:*.sm, and an equivalent VESTA modei.ctmc. The test-case model
for MRMC is generated from the PRISM model using th&h script. Note that, the
value of the model parameté&f = X X is hard coded into the PRISM and VESTA
models of each test case.

e ./ cps. csl —the PRISM property file containing the model labeling (thee for
all test cases).

e test |ist — the list of enabled test cases, this list is managed the seayeas
any othert est | i st file. Note that, if a test case is disabled then one has to do
corresponding changes in thes. par amfile.

e Cps. par am- the values ofV for each test case. This file determines fieaxes
values on the generated statistics plots (produced ugingl ot). After a test exe-
cution thecps. par amfile values are copied into the first column of the (generated)
*.dat files.

e . /input_list — the list of available inputs. The inputs here have a muchemor
complex structure. Each input is represented by a folddren t i nput s directory.

e . /inputs/cps01l/ —contains data related to tb@sO01 input:

— ./tool sist —the list of tools that are going to be tested with this input,

— . /*.gnupl ot — thegnupl ot template scripts for generating plots for the
corresponding statistic,

— ./ nrnt/ —the MRMC parameters for tleps01 input:

x ./ conmon. opt i ons — the sequence of common command-line options
used in every invocation of MRMC with this input.

x ./ files —the script for providing MRMC with the right input files.

x . /1 nput —the sequence of MRMC command-prompt commands and ver-
ification properties. This file is similar to thanput files of thel unpi ng-
performance sub suite,

x ./ options —the list of additional MRMC command-line options. In this
file each (not commented and possibly empty) line corresptmd different
set of extra tool options. Remember that, common options tatse placed
in the. / conmon. opti ons file. If . / opt i ons contains more than one
uncommented line, even if it is empty, the tool will be run ex@l times,
each time taking a different set of options. This way one eag,, run Ymer
with and without - est i mat e- pr obabi | i t i es option, and treat these

27

two invocations as if they are for two different tools. Thig fis similar to
theopti on_l i st files of thel unpi ng-performance sub suite.

— ./ vest al —the VESTA parameters for the inputps01. Has the same struc-
tureas. / nrnc/ .

— ./ ymer/ —the Ymer parameters for the inputps01. Has the same structure
as./nrnc/.

5.2.2. Test statistics
Thesi mul at i ons-performance tests generate statistics by means of tlenioly script:
.Isimulations/scripts/shell/statistics.sh

Note that, the initially-gathered statistical data is pléen thest ati sti cs sub folder
of each test case. Such a directory always contains subrfotdgresponding to the en-
abled inputs. In other words, for each test c&€LI C_POLLI NG.NXX and the input
cpsYY, whereXX € {03, 06, 09, 12, 15, 16, 17, 18} andYY € {01, 02, 03, 04}, the
initial statistics is located inside the following folder:

./ CYCLI C.POLLI NG.NXX/ stati stics/cpsYY
Below, we discuss the statistics-generation process aprtduced files in details.
Model-Check Time Statistics: The time statistics is collected in a way similar to how

it is done for thd unpi ng-performance tests. The model-check times are first stortei
* timestatfiles. For example, the file:

CYCLI C_.POLLI NG.NO3. cps01. nt nt. comon. t i mest at
contains model-check times reported by MRMC for each of
NUVBER_OF _PERFORMANCE_REPETI T1 ONS

repetitions, when run on theps01 input. Note that, the sub string bnmon” in the file’'s
name indicates that MRMC is run with the common options, mivethe file:

./ cps/inputs/cps0l/ nrnc/ conmon. opti ons.

Note that,. / cps/ i nput s/ cps01/ nr nt/ opti ons only contain one empty line (i. e.
no extra options). In contrast, the files:

CYCLI C_.POLLI NG.NO3. cps01. yner. comon. t i nest at , and
CYCLI C.POLLI NG.NO3. cpsO1. yner.--estimate-probabilities.tinestat

contain model-check times reported by Ymer, when run wighdptions defined by the con-
tent of. / cps/ i nput s/ cps01/ yner/ comron. opt i ons and, respectively, the first
(empty) and second (non-empty) line.dfcps/ i nput s/ cps01/ yner/ opti ons.

When the test runs farps are finished the time statistics is produced by the next steps

1. The*.performance.statisticBles are produced and stored in the directory:

28

./l cps/statistics/cpsYY

For example,cpsO1. nr nt. conmon. sanpl e. stati sti cs contains average,
for each test case, model-check times reported by MRMC o pis®1 input. The
corresponding files for Ymer are

cpsOl. ynmer. comon. per f or mance. stati stics, and
cpsOl. ymer.--estinmate-probabilities.performnce. statistics

The first file corresponds to running Ymer with the commonamiand the second
one for running Ymer with the common options with an extraapt

--estimate-probabilities,

as defined by the files:/ cps/ i nput s/ cps01/ ymer / common. opt i ons, and
./ cps/inputs/cps0l/ymer/options.

2. The./cps/statistics/cpsYY. performance. dat files are produced. For
each inputpsYY the file is generated by putting tk@s. par amfile date as the first
column and then the data from the relevant

cpsYY. *. perfornmance. statistics

files as the subsequent columns.

3. The./cps/statistics/cpsYY. perfornmance. eps files are produced using
the corresponding. dat file and thegnupl ot template script:

./l cps/inputs/cpsYY/ performance. gnupl ot .

Memory-Consumption Statistics: The “memory-consumption” statistics is produced
similar to how it is done for thé unpi ng-performance tests. One should only take into
account that for one input we can have several differenstantl each of these tools can be
run with a set of different command-line options. In essetioe main steps for generating
“memory-consumption” statistics of each kind (i.vSZ, MRSS, AVSZ, ARSS) are the
same as for the “model-check time” statistics. Note thaf assult we only produce plots
for the MWSZ statistics, i.e. / cps/ stati stics/cpsYY. nenory. nvsz. eps. The
latter is generated using tigmupl ot template script:

./l cps/inputs/cpsYY/ nmenory. gnupl ot .

and the. / cps/ stati stics/cpsYY. nenory. dat data file.

29

Actual Confidence-Levels Statistics: The main steps for generating the “actual
confidence-levels” statistics are the same as for the “mdadetk time” statistics.
Note that:

e The reported data can bepmobability or in %, as defined by th€ONFUNI T param-
eter, see Sectioh.3.

e The*.confstatfiles, stored in the
./ CYCLI C.POLLI NG NXX/ statistics/cpsYY

folders, contain a column of ones and zeroes. One corresgoralcorrect, and zero
to a wrong model-checking result.

e The files of the intermediate statistics, located in.theps/ st ati sti cs/ cpsYY
folders, have an extensiohconfidence.statistics

e As a result we produce/ cps/ statistics/cpsYY.confidence. dat and
.l cps/statistics/cpsYY.confidence. eps. The latter is generated using
thegnupl ot script:. / cps/ i nput s/ cpsYY/ confi dence. gnupl ot .

Number of Used Observations Statistics: The main steps for generating the “num-
ber of used observations” statistics are the same as fontbdél-check time” statistics.
Note that:

e The*.samplestafiles, stored in the
./ CYCLI C.POLLI NG NXX/ statistics/cpsYY

folders, contain the number of used observations as reptwtethe corresponding
tools. An exception is Ymer, which does not report this numié&erefore, the tool
was extended in order to provide us with the desired outputnfore details on using
Ymer with the test suite see Appendix

e The files of the intermediate statistics, located in.theps/ st ati sti cs/ cpsYY
folders, have an extensiohsample.statistics

e As aresult we produce/ cps/ stati stics/cpsYY. sanpl e. dat and
./l cps/statistics/cpsYY.sanpl e. eps. The latter is generated using the
gnupl ot script:. / cps/i nput s/ cpsYY/ sanpl e. gnupl ot .

30

6. Contact

The development of MRMC began in 2004 in the Formal MethodkTools group (FMT)
at the University of Twente (The Netherlands) under the sugien of Prof. Dr. Ir. Joost-
Pieter Katoen. Later, the main development of the tool wagatido the Software Modeling
and Verification group at the RWTH Aachen (Germany). At pnésieere are several other
groups involved into the tool development, namely the Imfatics for Technical Applica-
tions group at the Radboud University Nijmegen (The Netrett), the Dependable Systems
and Software group at the University of Saarland (Germaany, the Scientific Computing
and Control Theory group at the Centrum voor Wiskunde errinética (The Netherlands).
If you have any questions, comments or ideas, or if you waigatbicipate in MRMC
development, please consider the following contact in&drom:

Name: Prof. Dr. Ir. Joost-Pieter Katoen

Relation: The MRMC team leader, 2004 — present

Affiliation: Software Modeling and Verification, RWTH Aachen, Ger-
many

Name: Dr. lvan S. Zapreev

Relation: MRMC development, 2004 — present

Affiliation: Scientific Computing and Control Theory, Centrum voor
Wiskunde en Informatica, The Netherlands

Name: Dr. Ir. David N. Jansen

Relation: MRMC extension and optimization, 2007 — present
Affiliation: Informatics for Technical Applications, Radboud Univéysi
Nijmegen, The Netherlands

= 0 9

Name: Prof. Dr. Ing. Holger Hermanns

Relation: CTMDPI model checking, 2007 — present
@ Affiliation: Dependable Systems and Software, University of Saarland,
&S Germany

More contact information can be found on the MRMC web-pag2\[08].

31

http://www-i2.informatik.rwth-aachen.de/~katoen/
http://db.cwi.nl/personen/publiek/zoek_show.php4?persnr=2198
http://www.cs.ru.nl/D.Jansen/
http://depend.cs.uni-sb.de/index.php?hermanns

Bibliography

[ABFH*08] Cerion Armour-Brown, Jeremy Fitzhardinge, Tom Hughdisholas Nether-
cote, Paul Mackerras, Dirk Mueller, Julian Seward, RobeaitslV, and Josef
WeidendorferValgrind, http://www.valgrind.org/2008.

[BCGO2] A. Bondavalli, A. Coccoli, and F. Di Giandomenid@pS Analysis of Group
Communication Protocols in Wireless Environmefiuwer Academic Pub-
lishers Concurrency in Dependable Computing, 2002.

[BKKTO03] P. Buchholz, J.-P. Katoen, P. Kemper, and C. Teppadel-checking large
structured Markov chainsJournal of Logic and Algebraic Programmibg
(2003), 69-96.

[DCO3] Jake Dawley-Carr, HowTo: Profile Memory in a Linux System
http://mail.nl.linux.org/linux-mm/2003-03/msg000@A#I, 2003.

[FPO4] W. Fokkink and J. Pan&jmplifying Itai-Rodeh leader election for anonymous
rings, Electronic Notes in Theoretical Computer Scied@s8 (2004), no. 6,
53-68.

[GSB94] Rajiv Gupta, Scott A. Smolka, and Shaji Bhaskam, randomization in se-
quential and distributed algorithmsACM Computing Survey26 (1994),
no. 1, 7-86.

[HHKOOQ] B. Haverkort, H. Hermanns, and J.-P. Kato@m the Use of Model Checking
Techniques for Dependability Evaluatiddymposium on Reliable Distributed
Systems (SRDS), IEEE Computer Society, 2000, pp. 228-237.

[HKMKSO00] Holger Hermanns, Joost-Pieter Katoen, Joachiey&t-Kayser, and Markus
Siegle,A Markov Chain Model Checkeffools and Algorithms for the Con-
struction and Analysis of Systems (TACAS) (Susanne Graf Biichael
Schwartzbach, eds.), LNCS, vol. 1785, Springer, 2000, $p-362.

[IR90] Alon Itai and Michael Rodefsymmetry breaking in distributed networks
formation and Computatio88 (1990), no. 1, 60-87.

[IT90] Oliver C. Ibe and Kishor S. TrivediStochastic Petri Net Models of Polling
SystemsSelected Areas in Communicatio®$1990), no. 9, 1649-1657.

32

http://www.valgrind.org/
http://mail.nl.linux.org/linux-mm/2003-03/msg00077.html

[JKO+07]

[KKZO05]

[KKZJ07]

[KNPO2]

[KNPO6]

[KNPO8a]

[KNPO8b]

[LPO2]

[MKLO4]

[MNS99]

[PZ86]

[RR98]

David N. Jansen, Joost-Pieter Katoen, Marcel Oldenk&fapiélle Stoelinga,
and lvan S. Zapreetow Fast and Fat Is Your Probabilistic Model Checker?
Haifa Verification Conference (HVC), LNCS, vol. 4899, Spyamn, 2007,
pp. 65— 79.

Joost-Pieter Katoen, Maneesh Khattri, and lvan &r2evA Markov Reward
Model CheckerQuantitative Evaluation of Systems (QEST), IEEE Computer
Society, 2005, pp. 243-244.

Joost-Pieter Katoen, Tim Kemna, Ivan S. Zapreewl ®avid N. Jansen,
Bisimulation Minimisation Mostly Speeds Up Probabilidgtiodel Checking

Tools and Algorithms for the Construction and Analysis os@yns (TACAS)

(Orna Grumberg and Michael Huth, eds.), LNCS, vol. 4424 rigy@r, 2007,

pp. 87-101.

M. Kwiatkowska, G. Norman, and D. Park@RISM: Probabilistic Symbolic
Model CheckerModelling Techniques and Tools for Computer Performance
Evaluation (TOOLS) (T. Field, P. Harrison, J. Bradley, andHarder, eds.),
LNCS, vol. 2324, Springer, 2002, pp. 200-204.

, Symmetry Reduction for Probabilistic Model Checki@pmputer
Aided Verification (CAV) (T. Ball and R. Jones, eds.), LNCSl.v4114,
Springer, 2006, pp. 234-248.

__, Prism case studiesittp://www.prismmodelchecker.org/casestudies/
2008.

: Prism web-page, Workstation Cluster Example
http://www.prismmodelchecker.org/casestudies/chyst@ 2008.

Richard Lassaigne and Sylvain Peyronnéjpproximate verification of
probabilistic systemsProcess Algebra and Probabilistic Methods, Perfor-
mance Modeling and Verification (PAPM/PROBMIV) (Holger Heanns and
Roberto Segala, eds.), Springer, 2002, pp. 213-214.

Mieke Massink, Joost-Pieter Katoen, and Diego WateModel Checking De-
pendability Attributes of Wireless Group Communicati@ependable Sys-
tems and Networks (DSN), IEEE Computer Society, 2004, pp-720.

Michael Mock, Edgar Nett, and Stefan Schemnigficient Reliable Real-
Time Group Communication for Wireless Local Area Netwpikgropean
Dependable Computing Conference (Jan Hlavicka, Erik Mgedrhd Andrs
Pataricza, eds.), LNCS, vol. 1667, Springer, 1999, pp. 380—

A. Pnueli and L. Zuck\erification of Multiprocess Probabilistic Protocols
Distributed Computind. (1986), no. 1, 53-72.

M. K. Reiter and A. D. RubinCrowds: Anonymity for Web Transactigns
ACM Transactions on Information and System Security, vpIACM Press,
1998, pp. 66-92.

33

http://www.prismmodelchecker.org/casestudies/
http://www.prismmodelchecker.org/casestudies/cluster.php

[Som97]

[SVAO4]

[YKNPO4]

[YKNPOG]

[YouO5a]

[YouO5b]

[YS06]

[Zap08]

[ZIN*08]

Fabio Somenzi, CUDD: CU decision diagram package
http://visi.colorado.edufabio/CUDD/, 1997, Public software.

Koushik Sen, Mahesh Viswanathan, and Gul Agbgtistical Model Check-
ing of Black-Box Probabilistic SystemSomputer Aided Verification (CAV)
(Rajeev Alur and Doron A. Peled, eds.), LNCS, vol. 3114, &per, 2004,
pp. 202-215.

H. Younes, M. Kwiatkowska, G. Norman, and D. Parkéumerical vs. Sta-
tistical Probabilistic Model Checking: An Empirical Studiools and Algo-
rithms for the Construction and Analysis of Systems (TAC/AS)Jensen and
A. Podelski, eds.), LNCS, vol. 2988, Springer, 2004, pp.606—

Hakan Younes, Marta Kwiatkowska, Gethin Norman, and DavitkétaNu-
merical vs. Statistical Probabilistic Model Checkjr&pftware Tools for Tech-
nology Transfer (STTT$ (2006), no. 3, 216-228.

H. Younes,Verification and Planning for Stochastic Processes withnAsy
chronous Evenidh.D. thesis, Computer Science Department, Carnegie Mel-
lon University, Pittsburgh, PA, USA, 2005.

, Ymer: A Statistical Model Checke€Computer Aided Verification
(CAV) (Kousha Etessami and Sriram K. Rajamani, eds.), LN@%, 3576,
Springer, 2005, pp. 429-433.

H. Younes and R. Simmons§tatistical Probabilistic Model Checking with
a Focus on Time-Bounded Propertiemformation and Computatio204
(2006), no. 9, 1368-1409.

I. S. Zapreewlodel Checking Markov Chains: Techniques and ToBlsD.
thesis, University of Twente, Enschede, The Netherlan@332

lvan S. Zapreeyv, Christina Jansen, Viet Yen Nguyen, @akiJansen, et al.,
MRMC homepagéttp://www.mrmc-tool.org/2008.

34

http://vlsi.colorado.edu/~fabio/CUDD/
http://www.mrmc-tool.org/

A. Using Ymer

In order to use Ymer with the performance test suite one hesrisider the following steps:

1. According to the Ymer installation instructions, the CDDSom97] package has to
be installed. Typically, installation of this package isiagle task, but there are two
things, one might need to take into account:

a) At least up until CUDD 2.4.1, the package does not have support fordit
architecture. If one is to compile it on6-bit machine then it can be done by
appending the-“nB2” flag to the assignments &@PPFLAGS, | CFLAGS, and
LDFLAGS variables in the CUDD makefileCQUDD_HOVE DI R/ Makefi | e).

b) Theconfi gur e script of Ymer requires th€UDDDI R parameter. Its value
should be the name of the folder containing required libeargt header files of
CUDD. To our knowledge, if CUDD is compiled but is not inséal| the required
files are located in several different folders. Thus, onetbasld the following
soft links to theCUDD_HOVE_DI R/ i ncl ude folder:

i bcudd.a -> ../cudd/Ilibcudd. a

l'i bdddnp.a -> ../dddnp/|i bdddnp. a

libepd.a -> ../epd/libepd. a

libmr.a -> ../ntr/libntr.a

libst.a -> ../st/libst.a

libutil.a ->../util/libutil.a

2. Because Ymer uses CUDD, it does not supedrbit architecture as well. In or-
der to overcome this problem, simply add thenB82” flag to the assignments of
AM CPPFLAGS, AMCFLAGS, andAMLDFLAGS variables in the template makefile
(YMER HOVE DI R/ Makef i | e. am of Ymer.

3. At this point, the Ymer sources can be configured by running
./ configure CUDDDI R=CUDDHOVE DI R/i ncl ude
4. In order to fix some minor source-code problems and to adiduburequired by the

MRMC test suite,YMER HOVE_DI R/ yner . cc has to be modified . The modifica-
tions that have to be done are indicated by the followingniisin FigureA.1:

5. Now, Ymer is ready for the test suite and can be compiledibying itsmake file.

35

>>di ff ynmer.cc yner.old.cc
25d24

< #include <math. h>
411c410

</* if (optopt =="7") {*/
> if (optopt =="7") {
414c413

< [* } * [

>}

716d714

< std::cout << "Sanpled states: " << total _path_|engths << std::endl

Figure A.1.: Modifying Ymer

36

	1 Introduction
	2 General details
	2.1 What is that we are testing?
	2.2 Top-level test-suite structure
	2.3 Configuring tests
	2.4 Common test-suite files

	3 Managing tests
	3.1 Running
	3.1.1 Internal and functional tests
	3.1.2 Lumping-performance tests
	3.1.3 Simulation-performance tests

	3.2 Stopping
	3.3 Cleaning

	4 Internal and functional tests
	5 Performance tests
	5.1 Lumping-performance tests
	5.1.1 Test structure
	5.1.2 Test statistics

	5.2 Simulations-performance tests
	5.2.1 Test structure
	5.2.2 Test statistics

	6 Contact
	A Using Ymer

