
Manual

MRMC TEST SUITE

Version 1.5

January 12, 2011

Authors:
Ivan S. Zapreev

Christina Jansen

Contents

1. Introduction 2

2. General details 3

2.1. What is that we are testing? . 3

2.2. Top-level test-suite structure . 4

2.3. Configuring tests . 5

2.4. Common test-suite files . 6

3. Managing tests 8

3.1. Running . 8

3.1.1. Internal and functional tests . 9

3.1.2. Lumping-performance tests . 10

3.1.3. Simulation-performance tests . 13

3.2. Stopping . 16

3.3. Cleaning . 17

4. Internal and functional tests 19

5. Performance tests 20

5.1. Lumping-performance tests . 20

5.1.1. Test structure . 22

5.1.2. Test statistics . 23

5.2. Simulations-performance tests . 26

5.2.1. Test structure . 27

2

5.2.2. Test statistics . 29

6. Contact 32

A. Using Ymer 36

1

1. Introduction

MRMC [KZH+09] (see also [JKO+07, KZ09]) is a command-line tool for model check-
ing discrete-, continuous- time Markov chains, and their reward extensions. It also support
model checking of continuous-time Markov decision processes, bisimulation minimization,
simulation-based model checking and many other features.

In order to keep MRMC bug free and to compare its performance to other model-checking
tools (such as PRISM [KNP02], Ymer [You05b] and VESTA [SVA04]) we have developed
a fully automated test suite featuring: internal, functional and performance tests.

The internal tests are targeted on testing, e. g., MRMC data structures, such as: sparse ma-
trices, bit sets, sample vectors, and etc. The functional tests are used to assess the user-level
behavior of the tool. This includes tests for the command-line interface, model-checking
algorithms, and etc. Last but not least, the performance tests allow to evaluate the efficiency
of implemented algorithms, such as: probabilistic bisimulation minimization, and “discrete
event simulation” based model checking. Here, we consider several efficiency aspects: veri-
fication time, memory usage and etc.

The test suite contains well-known case studies: Wireless Group Communication Pro-
tocol (WGC) [MNS99, BCD02, MKL04], Simpel Peer-To-Peer Protocol (PTP) [KNP06],
Workstation Cluster (WC) [HHK00, BKKT03, YKNP04, KNP02, KNP08b], Cyclic Server
Polling System (CSP) [IT90, You05b, You05a, HKMKS00, SVA04, YKNP06, YS06], Ran-
domized Mutual exclusion (RME) [PZ86], Crowds Protocol (CP) [RR98, KNP08a] and Syn-
chronous Leader Election Protocol (SLE) [IR90, LP02, GSB94, FP04].

The test suite is freely distributed and can be obtained from:

http://www.mrmc-tool.org/

Note that, the test suite is intended to be used on a Linux platform only and its performance
sub suite is not proven to work correctly under ”Windows + Cygwin” or ”Mac OS X”.

This manual contains the description of the test suite for MRMC v1.5. The provided
description is not complete, and is more-or-less a sorted collection of notes and various facts
related to the test suite. It should simplify the process of acquaintance with the MRMC
testing but the best understanding of the process can be only obtained through reading the
test-suite scripts.

The rest of the document is organized as follows. Chapter 2 gives an overview of the test-
suite. There, we discuss what and how we test, we also talk about the test-suite structure,
its’ configuration parameters and common-file types. Chapter 3 explains how the tests can
be invoked, stopped and cleaned. In addition, we show how the test-run outputs should be
interpreted. Chapters 4 and 5 provide additional information about internal, functional and
performance tests. Chapter 6 contains contact information.

2

http://www.mrmc-tool.org/

2. General details

In this chapter we are going to discuss some details about the test-suite’s designation, top-
level structure, configuration parameters, and most common file types.

2.1. What is that we are testing?
The MRMC test suite consists of three major parts that also have subdivisions:

1. internal – unit tests for the MRMC core.

2. functional – contains the tests for:

• The command-prompt interface of MRMC.

• Model-checking algorithms for:

– Model checking PRCTL properties on DTMCs.

– Model checking CSL properties on CTMCs:

∗ Numerical algorithms.

∗ Discrete event simulation algorithms.

– Model checking PRCTL properties on DMRMs.

– Model checking CSRL properties on CMRMs.

– Model checking CSL properties on CTMDPs.

– Probabilistic bisimulation for DTMCs, CTMCs, DMRMs, and CMRMs.

3. performance – contains the tests for:

• lumping – Measures the effects of strong bisimulation minimization in model
checking of DTMCs, CTMCs, DMRMs, and CMRMs. The latter two with state
rewards only. For the published experimental results see [KKZJ07].

• simulations – Compares the efficiency of the discrete event simulation en-
gines of MRMC, Ymer, and VESTA, when model checking CTMCs, see [KZ09].

Internal tests are simple C programs that include MRMC sources and manipulate with
the tools data structures and/or algorithms. These programs provide some output that, when
compared to the expected output, allow to check whether or not the MRMC interns are
working properly.

Functional tests assess that MRMC, when invoked with certain command line options and
run on certain input files, command-prompt commands and/or logical formulae, produces the
expected output.

3

Performance tests for lumping run MRMC on various case studies and collect time
and memory statistics for verifying the Markov chains, and for minimising plus verifying
the lumped Markov chain. The latter is done for both formula-dependent and formula-
independent lumping. The time statistics is based on the elapsed-time output of MRMC,
whereas memory statistics is collected using the standard ps utility. The latter is periodi-
cally invoked during the test runs. For more information about experimental settings read
Section 4.2 of [Zap08].

Performance tests for simulations allow to run MRMC v1.5, Ymer (v3.0) and VESTA
(v2.0) on various case studies and collect time, memory, confidence, and samples statistics
for verifying the CTMCs. The confidence statistics estimates the % of correct answers pro-
duced by the same tool on the same model with the same inputs. The samples statistics
reflects the average number of states visited when verifying a given property with a given
tool on a given model. The time and samples statistics are based on the tool outputs with one
exception. By default, Ymer does not report on the number of sampled states. Therefore,
we extended the tool with the required print statement (for more details see Appendix A).
The memory statistics, for all tools, is collected the same way as it is done for the lumping
tests. For more information about matching the tool parameters and other experimental set-
tings read Sections 7.1 and 7.2 of [Zap08].

Note that, lumping and simulations sub-suites both use PRISM and its models for
generating MRMC input files (Markov chains, labelling, rewards).

Extended information about the performance test-suite can be found in Chapter 5.

2.2. Top-level test-suite structure
After downloading the MRMC test v1.3.zip file, unpack it in the MRMC folder. As
a result a directory MRMC HOME DIR/MRMC test v1.3/ will be created. Further, for
brevity, we assume that you rename it into MRMC HOME DIR/test/. Then the test-suite
structure is as follows:

• ./TS Manual.pdf – The test-suite manual.

• ./LICENSE – A copy of the GPL license.

• ./README – The “read me” file.

• ./RELEASENOTES – The release notes.

• ./settings.cfg – The configuration script.

• ./test all.sh – The test-suite invocation script.

• ./clean all.sh – The test-suite “clean-up” script.

• ./stop.sh – The test-run termination script.

• ./internal tests/ – Unit tests of the MRMC core.

• ./functional tests/ – Functional tests of MRMC.

• ./performance tests/ – Performance tests of MRMC.

4

2.3. Configuring tests
The main configuration parameters of the MRMC test-suite can be set in the

MRMC HOME DIR/test/settings.cfg

configuration script. These parameters are subdivided into two groups:

General settings

• MRMC HOME DIR - The absolute name of the MRMC distribution directory.

• MRMC - The location of the MRMC binary. This setting does not need to be changed if
MRMC HOME DIR is set correctly. Note that, when running MRMC on Windows, the
binary name should be set to mrmc.exe.

• VALGRING HOME - The absolute path to the valgrind executable [ABFH+08].
It is only required if tests are run under the -valgrind option. Note that in this
case MRMC should be first recompiled with the -O0 -ggdb -g options, which are
available in MRMC HOME DIR/makefile.def.

• VALGRIND LOG FILES DIR - The absolute name of the folder for storing log filed
produced by valgrind.

• EXTRA VALGRIND PARAM - Extra options for valgrind.

Performance-test settings The performance part of the test suite was developed for
Linux platform only. It is not proven to work under Windows or Mac OS X.

• PRISM - The absolute path of the PRISM [KNP02] command line executable. This
setting is required for generating performance-test models.

• TMPDIR - This setting should point to a local directory, which will be used for storing
generated models.

• YMER - The absolute path of the Ymer [You05b] command line executable2.

• VASTA JAR - The absolute path of the VESTA [SVA04] jar file2.

• NUMBER OF PERFORMANCE REPETITIONS - The number of times every perfor-
mance test is going to be repeated. If set to zero, no “elapsed-time” statistics is col-
lected. At the same time the functional testing and the memory-usage statistics are
collected only for the lumping sub suite.

• MILLISECONDS - The time units of the “elapsed-time” plots.

• KILOBYTES - The data units of the “memory-usage” plots.

• CONFUNIT- The data units of the “confidence” plots2.

• PERFORMANCE TEST TIMEOUT SECS - The timeout (in seconds) for each perfor-
mance test invocation.

2This setting is required only for the simulation sub suite.

5

2.4. Common test-suite files
One of the most common kind of files in the test suite is the test list file. These files
contain lists of names which always correspond to the names of the same directory’s sub-
folders. These names should be interpreted either as test names or test sub-suite names.

Modifying test list files one can easily prevent tests or sub suites from running. In
order to do so, just place the “#” symbol (anywhere) on the line with the test (suite) name. For
example, consider ./functional tests/test list – the list of functional-test sub suits.
This file contains the following data:

#############
TEST LIST
#############

#Tests for Discrete-time Markov Chains
dtmc

#Tests for Continuous-time Markov Chains
ctmc

#Tests for Discrete-time Markov Reward Models
dtmrm

#Tests for Continuous-time Markov Reward Models
ctmrm

#Tests for Continuous-time Markov Decision Processes
ctmdpi

The following modification of this file excludes the dtmc and ctmdpi sub-suites from the
test runs:

#############
TEST LIST
#############

#Tests for Discrete-time Markov Chains
#dtmc

#Tests for Continuous-time Markov Chains
ctmc

#Tests for Discrete-time Markov Reward Models
dtmrm

#Tests for Continuous-time Markov Reward Models
ctmrm

#Tests for Continuous-time Markov Decision Processes
#ctmdpi

The test suite contains various permanent files, designated for this or that purpose. The
most common file-name extensions of these files are:

6

• *.info – test case description

• *.input – MRMC commands

• *.tra – Markov Chains (MC)

• *.lab – MC labelling

• *.rew – MC state rewards

• *.rewi – MC impulse rewards

• *.golden – expected MRMC output

• *.zip – contain *.golden files

During test runs, the test suite produces various temporary files. The most common file-
name extensions of such files are listed below:

• *.out – actual MRMC output

• *.diff – diff *.out *.golden

• *.results – time statistics

• *.memstat – memory statistics

It is important to note that, *.out files are generated during every test run. If there is
no difference between the *.out and the corresponding *.golden file then the former one is
deleted. If some difference was detected then it is stored in the *.diff file and the test is
marked as failed (FAIL) in the test script output, otherwise it is marked as passed (PASS).

To put it in a nutshell, if a test fails then its directory contains two new files: *.out - an
actual test output; *.diff - a difference between the *.out and the *.golden file. Note that,
Typically before diff is applied, the *.out and *.golden files are preprocessed by a sed
script that filters out run-dependent data. That is why resulting *.diff files contain only the
relevant difference between expected and actual outputs.

Fore more details about the test-suite files, consider reading Chapters 4 to 5.

7

3. Managing tests

In this chapter we briefly introduce the test-suite functionality by explaining how it can be
invoked, stopped and cleaned. We also explain how to interpret test-run outputs. For more
information about internal, functional and performance tests we refer to Chapters 4 and 5.

3.1. Running
In this section we are going to discuss two things: (i) how the MRMC test suite can be
invoked; (ii) how to interpret test-run outputs. Since the test suite has many purposes, we
split our explanations in several parts. First, we discuss how the test suite and its sub suites
can be run. Then, we explain how the output of the internal and functional sub suites has
to be interpreted. In the end, we separately talk about the outputs of the lumping- and
simulation- performance sub suites.

The only valid way for invoking MRMC testing is to use the script:

MRMC HOME DIR/test/test all.sh

When run without any parameters, this script produces the following output:

>>test_all.sh
Usage: MRMC_HOME_DIR/test/test_all.sh [options]
Options:
-all: run all tests
-internal: run internal tests
-functional: run functional tests
-performance: run performance tests
-valgrind: turn on Valgrind (mrmc has to be

compiled with ’-O0 -ggdb -g’ options)

From this it becomes clear that all available MRMC tests can be run by using:

>>test_all.sh -all

whereas for running functional and performance sub suites we should use:

>>test_all.sh -functional -performance

A distinctive feature of the test suite is that functional and performance tests can be run
under the Valgrind profiling tool [ABFH+08]. This feature is very useful for MRMC
developers, because it allows to track memory leaks and misuses. In order to run functional
tests under Valgrind one has to:

8

1. Erase all MRMC binaries, by running make clean in the MRMC HOME DIR folder.

2. Modify the the MRMC HOME DIR/makefile.def file:

a) Comment: CFLAGS += -O3

b) Uncomment: #CFLAGS += -O0 -ggdb -g

3. Compile MRMC binaries, by running make all in the MRMC HOME DIR folder.

4. Invoke the functional test suite by running:

>>test_all.sh -valgrind -functional

The profiling-log files (one for each test) will be located in the folder, defined by the

VALGRIND LOG FILES DIR

variable in MRMC HOME DIR/test/settings.cfg.
Note that:

• Valgrind can be supplied with various options by means of the script’s variable:
EXTRA VALGRIND PARAM.

• Our test scripts are designed for Valgrind version 3.3.0 or higher.

3.1.1. Internal and functional tests
An example output of the internal- and functional-test run looks as follows:

>>test_all.sh -internal -functional

* NOTE: Running Internal Tests

*

* .:

sample_01..PASS
sample_02..PASS
simulation_utils_01....................................PASS

...
test_lab_reader..PASS
test_label...PASS
test_omega...FAIL
test_sparse..PASS

* NOTE: Running Functional Tests

*

* ./dtmc/pctl/syntax:

pctl_general_input_01..................................PASS
pctl_general_input_02..................................PASS
pctl_general_input_03..................................PASS

* ./dtmc/pctl/operators/basic:

pctl_basic_01..PASS

9

* ./dtmc/pctl/operators/long_run:

pctl_steady_state_01...................................FAIL
pctl_steady_state_02...................................PASS
pctl_steady_state_03...................................PASS
pctl_steady_state_04...................................PASS

...

Here, all tests except for test omega (internal tests) and pctl steady state 01
(functional tests), pass. In order to find out what caused the test failures, one can consider
checking the *.diff and/or *.out files of the corresponding tests. The location of these files is
defined by the test-run output.

We already know (see Section 2.2) that internal and functional tests are located (respec-
tively) in the internal tests and functional tests sub folders of the directory:
MRMC HOME DIR/test/. The remaining path to the test location can be constructed with
the test name and the sequence of sub-suite names leading to the given test. This name se-
quence is provided in the test-run output right before each sub-suite tests are executed. For
the test omega test, the name sequence is indicated by the output: “* .:” which means
that it is empty. For the pctl steady state 01 test, the sequence is given by the output:
“* ./dtmc/pctl/operators/long run:”. Therefore, the *.out and *.diff files for
these two tests are located in the following directories:

./internal_tests/test_omega

./functional_tests/dtmc/pctl/operators/long_run/pctl_steady_state_01

3.1.2. Lumping-performance tests
Performance tests for lumping are designed to compare model-check time and memory
consumption when running MRMC (on the same models, with the same input parameters and
formulae to verify) in a simple model-checking mode, in “formula-independent” lumping
mode, and in “formula-dependent” lumping mode. Note that, for the latter two the model-
check time includes time required for lumping.

A typical output of the lumping sub suite is given in Figure 3.1. Here, we run perfor-
mance testing on the well known Randomized Mutual Exclusion (rme) case study [PZ86].
This study provides an algorithm guaranteeing that for N processes trying to access a criti-
cal section, at any time t there is at most one process in the critical-section phase and every
process can eventually enter the critical section. The rme test is located in:

./performance tests/lumping/dtmc lumping/rme

This location can be easily deduced from the lines 6 to 8 of Figure 3.1. Note that, the rme
test consists of the following test cases:

mrmc RANDOMIZED N04, ... , mrmc RANDOMIZED N06.

These correspond to the model parameter N being equal to 4, . . . , 6.
Execution of every lumping test consists of running each of its test cases and then gen-

erating overall statistics. Execution of every test case consists of several stages: generating
a model, testing MRMC functionality, gathering statistics. Below, we briefly introduce all of
these stages using (to a certain extent) the output provided in Figure 3.1.

10

1 >>test_all.sh -performance
2 ***
3 * NOTE: Running Performance Tests
4 *
5 Each test will be repeated ’10’ times.
6 - lumping
7 - dtmc_lumping
8 -- rme:
9 mrmc_RANDOMIZED_N04:

10 Generating the modelDONE
11 Functional test:
12 rme01:
13 mrmc_RANDOMIZED_N04.pctl.rme01: +.................PASS
14 mrmc_RANDOMIZED_N04.pctl.-ilump.rme01: +..........PASS
15 mrmc_RANDOMIZED_N04.pctl.-flump.rme01: +..........PASS
16 Performance test:
17 rme01: 0:+++ 1:+++ 2:+++ 3:+++ 4:+++ 5:+++ 6:+++ 7:+++
18 8:+++ 9:+++ DONE
19 mrmc_RANDOMIZED_N05:
20 Generating the modelDONE
21 Functional test:
22 rme01:
23 mrmc_RANDOMIZED_N05.pctl.rme01: +.................PASS
24 mrmc_RANDOMIZED_N05.pctl.-ilump.rme01: +..........PASS
25 mrmc_RANDOMIZED_N05.pctl.-flump.rme01: +..........PASS
26 Performance test:
27 rme01: 0:+++ 1:+++ 2:+13
28 ...

Figure 3.1.: An example run of the lumping sub-suite output.

Generating models

First, for each test case, the MRMC model is generated from the PRISM model. In every
test-run output this stage is indicated by:

Generating the modelDONE

See for example lines 10 and 20 of Figure 3.1. These lines contain model-generation
statements for the test cases: mrmc RANDOMIZED N04 and mrmc RANDOMIZED N05.
The PRISM’s *.log.out file, containing data about the model-generation process, is named
after the test case, and is located in the test-case folder, e. g., for mrmc RANDOMIZED N03
it is:

./rme/mrmc RANDOMIZED N03/mrmc RANDOMIZED N03.prism.log.out

The generated MRMC models are stored in the folder defined by the TMPDIR variable
of the ./test/settings.cfg script (see Section 2.3). It is desirable that this folder
is located on the hard drive of the machine that runs the tests. Otherwise, test runs can be
affected by the network-speed fluctuations.

11

./rme/option list ./rme/input list
pctl rme01.input
pctl -ilump
pctl -flump

Table 3.1.: The option list and input list files of the rme test.

Testing MRMC functionality

Functional testing is performed on every test-case model with the same input data as for the
further performance testing. The reason to do so is that, before performance testing, we want
to be sure that MRMC produces correct results.

For every test (such as rme) the list of used MRMC command-line parameters1 is located
in the option list file and the list of *.input files, containing MRMC commands and
verification formulae2, is located in the input list file.

For the rme test, these files are: ./rme/option list and ./rme/input list.
The content of the files is given in Table 3.1. For every test case, we run MRMC on all
various combinations of command-line options and the inputs given in these files. This is
reflected in lines 12–15 and 22–25 of Figure 3.1.

Note that, when running functional part of the lumping performance tests, the output
“-” indicates that the test run was terminated due to the time-out3, whereas “+” indicates
that the run is terminated normally. Also, the test output can contain a line similar to the
following one:

mrmc_RANDOMIZED_N05.pctl.rme01: +.................????

This means that the test run is finished but the results are still being analyzed. After a short
while, ???? will change into FAIL or PASS. The latter indicate whether the functional test
failed or passed.

Gathering statistics

For performance testing, every test case on every combination of inputs is run several times.
The number of repetitions is stated in the very beginning of the performance-suite output,
see e. g. line 5 in Figure 3.1, and is defined by the

NUMBER OF PERFORMANCE REPETITIONS

variable of the ./test/settings.cfg script. Each of performance runs is indicated
in the Performance test: section of the test-case output, e. g. see lines 17 and 27 in
Figure 3.1.

For a better usability, our scripts report the time progress (in tenths of a second) of every
test run. For instance, line 27 in Figure 3.1 indicates that the current test run has been be-
ing executed for about 1.3 seconds. Note that, the reported time is not exact. The time-out
script wakes up every 0.1 second in order to check for the possible time-out and to collect the

1See Section 5.1 of the MRMC manual.
2See Chapters 6 and 7 of the MRMC manual.
3See Section 2.3 for more details.

12

memory-usage data. This script also prints the time-progress information. Therefore, the ac-
tual time interval between the time-sampling moments is at least 0.1 second. One might want
to take this into account when setting the value of PERFORMANCE TEST TIMEOUT SECS.

Generating overall statistics

For a given test, after all performance-test runs are finished, the statistical data is collected
and the results are stored in the from of *.eps plots and *.dat (text) files. The latter ones
contain statistical data used to produce the corresponding *.eps plots. Figure 3.2 shows a
part of the statistics-generation log for the rme test. In this output, lines 18 to 21, one can
see that the overall memory statistics is represented by four plots:

• rme01.memory.mvsz.eps – maximum used virtual-memory size (MVSZ),

• rme01.memory.mrss.eps – maximum used resident-set size (MRSS),

• rme01.memory.avsz.eps – average used virtual-memory size (AVSZ),

• rme01.memory.arss.eps – average used resident-set size (ARSS).

Another type of plot we produce is the “model-check” time statistics. For the rme test it is
present in the rme01.performance.eps file. Note that, the resulting statistical data is
always stored in the test directory, e. g. ./lumping/dtmc lumping/rme for the case of
the rme test.

For more details about the resulting-statistics files consider reading Section 5.1.

3.1.3. Simulation-performance tests
Performance tests for simulations are designed to compare simulation-based model-
checking algorithms implemented in MRMC, Ymer and VESTA. Here, we collect four types
of statistic:

• “model-check time” – the same as for the lumping tests.

• “memory-consumption” – the same as for the lumping tests.

• “actual confidence levels” – the % of correct answers, produced by the tools when
model checking given properties on given models.

• “number of used observations” – the number of states sampled in order to verify vari-
ous model-checking formulae.

Note that, all the test models and tool parameters were made sure to be equivalent. For
more details, read Section 7.1 of [Zap08].

A typical output of the simulations sub suite is given in Figure 3.3. Here, we run per-
formance testing on the well known Cyclic Server Polling System (cps) case study [IT90,
You05b, You05a, HKMKS00, SVA04, YKNP06, YS06]. The case study describes a polling
system consisting of N equivalent stations and a server. Each station has a single-message
buffer and the stations are attended by a single server in a cyclic order. The server starts by
polling the first station. If this station has a message in its buffer (busy), the server starts

13

1 ...
2
3 ------------ Collecting statistics and preparing data ------------
4 mrmc_RANDOMIZED_N03:
5 rme01:
6 mrmc_RANDOMIZED_N03.pctl.rme01DONE
7 mrmc_RANDOMIZED_N03.pctl.-ilump.rme01DONE
8 ...
9 Converting the statistics into the gnuplot data files:

10 rme01.memory.dat:
11 Reading data file: rme.param
12 Reading data file: rme01.pctl.mvsz.memory.statistics
13 Reading data file: rme01.pctl.mrss.memory.statistics
14 ...
15 --
16 Writing gnuplot-data file: rme01.memory.dat
17 Generating:
18 rme01.memory.mvsz.eps
19 rme01.memory.mrss.eps
20 rme01.memory.avsz.eps
21 rme01.memory.arss.eps
22 --==WE ARE DONE==--
23 ...

Figure 3.2.: Producing statistical results for the rme test.

serving the station. Once the station has been served, or if there was no message in the buffer
(idle), the server start polling the next station. After polling all stations, the server returns
to polling the first station and thus beginning a new cycle. The polling and service times are
exponentially distributed with rates γ = 200 and µ = 1. The arrival rate of messages at a
station is equal for all stations and is exponentially distributed with rate λ = µ

N
.

The cps test is located in:

./performance tests/simulations/ctmc/cps

This location, the same way as it was done in Section 3.1.2, can be easily deduced from the
output provided in Figure 3.3. Note that, the cps test consists of the following test cases:

CYCLIC POLLING N03, ... , CYCLIC POLLING N18.

These correspond to the model parameter N ∈ {3, 6, 9, 12, 15, 16, 17, 18}.
Execution of every simulations test consists of running each of its test cases and

then generating overall statistics. Execution of every test case consists of several stages:
generating a model, gathering statistics. Below, we briefly introduce all of these stages
using (to a certain extent) the output provided in Figure 3.3.

Generating models

The model-generation part of the simulations tests is the same as for the lumping
tests. Note that, the MRMC models are generated from the PRISM models. Ymer directly
accepts PRISM models and VESTA uses its own input models, that were made sure to be
equivalent to the used PRISM models.

14

1 >>test_all.sh -performance
2 ***
3 * NOTE: Running Performance Tests
4 *
5 Each test will be repeated ’3’ times.
6 - simulations
7 - ctmc
8 -- cps:
9 CYCLIC_POLLING_N03:

10 Generating the model:DONE
11 Simulating the test:
12 cps01: 0:m+y+y+v+ 1:m+y+y+v+ 2:m+y+y+v+ DONE
13 cps02: 0:m+y+y+ 1:m+y-y+ 2:m+y+y+ DONE
14 cps03: 0:m+v+ 1:m+v+ 2:m+v+ DONE
15 cps04: 0:m+ 1:m+ 2:m+ DONE
16 CYCLIC_POLLING_N06:
17 Generating the model:DONE
18 Simulating the test:
19 cps01: 0:m+y+y+v+ 1:m+y+y+v+ 2:m+y+y+v+ DONE
20 cps02: 0:m-y+y- 1:m+y+y+ 2:m+y+y- DONE
21 cps03: 0:m+v+ 1:m+v+ 2:m+v+ DONE
22 cps04: 0:m+ 1:m+ 2:m+ DONE
23 ...

Figure 3.3.: An example run of the simulations sub-suite output.

Gathering statistics

The parameters influencing the number of repetitions of each test run and its timeout are
the same as for the lumping-performance tests. One of the main differences from the
lumping tests is that we do not just run MRMC but also Ymer and VESTA. Similar to
what we have for the lumping tests, for each case study, e. g. cps, we can have several test
cases that typically differ only by the models parameters. In each test case, we compare per-
formance of several different tools or the same tool but with different command-line options
and/or inputs.

Let us consider the example run in Figure 3.3. It is easy to see, line 5, that every tool run
(on a given test case, with selected command-line options and inputs), will be repeated 3
times. Moreover, for every test case, after the model is generated (e. g. line 10), the sim-
ulation tests are invoked. These tests are performed in a “per input” (csp01, csp02,
csp03, and csp04) manner. For example, on line 12 we can see that for the test case
CYCLIC POLLING N03 on the input cps01 we perform three repetitions marked from
0 to 2. In each repetition we consequently run MRMC – denoted by the letter “m”, Ymer
– denoted by the letter “y” and VESTA – the letter “v”. Ymer is run twice because the
command-line options for the first and second invocations differ. Unlike for lumping tests,
the “+” output indicates that the tool produced proper model-checking results, otherwise we
have “-”. The latter check is required for collecting the “actual confidence levels” statistics.

Remember that every input, e. g. cps01, contains a particular formulae that is to be model
checked. In our case, we verify CSL formulae but not all of the considered tools support this
logic to the full extent. Thus, it is possible that on a particular input we can only run some

15

of the tools, but not all of them. For example, it is the case with the input cps03. For this
input we can only run MRMC and VESTA, but not Ymer.

Generating overall statistics

For a given test, after all performance-test runs are finished, the statistical data is collected
and the results are stored in the from of *.eps plots and *.dat (text) files. The latter ones
contain statistical data used to produce the corresponding *.eps plots. Figure 3.4 shows a
part of the statistics-generation log for the cps test. In this output, lines 3, 27, 37, and 40
divide the output into four parts and show in which order the statistical data is generated. For
every input name INP and a set of tools run on this input we produce four plots:

• INP.memory.mvsz.eps – the “memory-consumption” statistics (MVSZ only), the
same as for the lumping tests.

• INP.performance.eps – the “model-check time” statistics, the same as for the
lumping tests.

• INP.confidence.eps – the “actual confidence levels” statistics.

• INP.sample.eps – the “number of used observations” statistics.

The resulting statistical data is always stored in the statistics sub folder of the test
directory, e. g. ./simulations/ctmc/cps/statistics for the case of the cps test.

For more details about the resulting-statistics files consider reading Section 5.2.

3.2. Stopping
The internal- and/or functional- test runs can be terminated by simply pressing Ctrl-C in the
console where they were invoked. The performance tests run MRMC in the background.
Therefore, in order to halt these tests, it is not enough to terminate the test scripts by press-
ing Ctrl-C. If performance tests are to be stopped, the MRMC HOME DIR/test/stop.sh
script shall be used. Just run it during the performance-test execution from another console.
A typical output of this script looks as follows:

>> stop.sh
+++++++++++++++++ Stopping tests +++++++++++++++

* Iteration 1: Some unstopped processes detected.
1. Killing the main script, PID: 18525
2. Killing the test scripts, PID: 27071
3. Killing the performance test scripts,

PID: 27373 27088 27083 27077
4. The MRMC processes is/are not running
5. The YMER processes is/are not running
6. Killing the JAVA processes, PID: 5081
7. Killing the PRISM processes, PID: 5546

* Iteration 2: Everything is stopped.
+++++++++++++++++++++ Done +++++++++++++++++++++

16

1 ...
2
3 ------------ Collecting PERFORMANCE statistics and preparing data ------------
4 CYCLIC_POLLING_N03:
5 cps01:
6 CYCLIC_POLLING_N03.cps01.mrmc.commonDONE
7 CYCLIC_POLLING_N03.cps01.ymer.commonDONE
8 CYCLIC_POLLING_N03.cps01.ymer.--pestimateDONE
9 CYCLIC_POLLING_N03.cps01.vesta.commonDONE

10 cps02:
11 ...
12
13 Converting the statistics into the gnuplot data files:
14 statistics/cps01.performance.dat:
15 Reading data file: cps.param
16 Reading data file: statistics/cps01/cps01.mrmc.common.performance.statistics
17 Reading data file: statistics/cps01/cps01.ymer.common.performance.statistics
18 Reading data file: statistics/cps01/cps01.ymer.--pestimate.performance.statistics
19 Reading data file: statistics/cps01/cps01.vesta.common.performance.statistics
20 --
21 Writing gnuplot-data file: statistics/cps01.performance.dat
22 Generating:
23 statistics/cps01.performance.*.eps
24 --==WE ARE DONE==--
25 ...
26
27 ------------ Collecting MEMORY statistics and preparing data ------------
28 CYCLIC_POLLING_N03:
29 cps01:
30 CYCLIC_POLLING_N03.cps01.mrmc.commonDONE
31 CYCLIC_POLLING_N03.cps01.ymer.commonDONE
32 CYCLIC_POLLING_N03.cps01.ymer.--pestimateDONE
33 CYCLIC_POLLING_N03.cps01.vesta.commonDONE
34 cps02:
35 ...
36
37 ------------ Collecting SAMPLE statistics and preparing data ------------
38 ...
39
40 ------------ Collecting CONFIDENCE statistics and preparing data ------------
41 ...

Figure 3.4.: Producing statistical results for the cps test.

Note that, this script will terminate all Java applications and/or MRMC, PRISM instances
running on the same machine. Yet, we assume that this script is sufficiently safe, since
performance testing should be done on a stand-alone machine dedicated specifically for the
testing purpose.

3.3. Cleaning
Some test runs result in temporary files, such as *.out, *.diff, and *.statistics files, and etc.
These files can be automatically erased by executing:

MRMC_HOME_DIR/test/test/clean_all.sh

When using this script, note that:

• *.eps and *.dat files produced by performance tests are not removed, so the resulting
data is preserved.

17

• In order to run performance test without deriving results from the previous runs run-
ning clean all.sh is compulsory!

• The temporary files are only removed for “enabled” tests, i. e. the test suites and test
that are not commented out in the corresponding test list files.

18

4. Internal and functional tests

In this section we briefly overview the structure of the internal- and functional-test sub suites.

MRMC HOME DIR/test/internal tests Stores tests for the MRMC core. These
tests are C source files that perform unit testing of some of the MRMC components. The
structure of this sub suite is similar to the structure of the functional sub suite.

MRMC HOME DIR/test/functional tests/ Stores tests for the MRMC interface
and the model-checking algorithms. The structure of this sub suite is as follows:

• ./test list – the list of tests

• ./test.sh – runs tests from test list

• ./clean.sh – removes temporary files

• ./dtmc/ – tests for Discrete Time Markov Chains

• ./ctmc/ – tests for Continuous Time Markov Chains

• ./dtmrm/ – tests for Discrete Time Markov Reward Models

• ./ctmrm/ – tests for Continuous Time Markov Reward Models

• ./ctmdpi/ – tests for Continuous Time Markov Decision Processes

The test suite also contains several supplementary files:

• ./out2golden.sh – substitutes the *.golden files with the pre generated *.out files
for the given list of tests. Has to be invoked as: out2golden.sh test list.

• ./sed.rules – contains sed rules for extracting meaningful data from the *.golden
and *.out files, before applying diff.

• ./pf.sh – performs filtering for *.golden and *.out files. Also, invokes diff and
reports PASS/ FAIL. This script is called from test.sh.

19

5. Performance tests

At present, the performance test suite of MRMC:

MRMC_HOME_DIR/test/performance_tests

has the following structure:

• ./test list – the list of tests suites

• ./test.sh – runs test suites from test list

• ./clean.sh – removes temporary files

• ./scripts/awk/ – scripts (awk) for processing statistical data

• ./scripts/shell/ – common scripts used for gathering statistics

• ./scripts/sed/ – scripts (sed) required for extracting statistical data

• ./scripts/bin/ – contains the pre-compiled bash shell binary1

• ./scripts/gcc/ – supplementary programs needed for test runs

• ./lumping/ – the test suite for the bisimulation (lumping)

• ./simulations/ – the test suite for the simulations-based model checking

Remember that the performance test suite consists of two sub suites, namely: lumping –
tests for bisimulation minimization [KKZJ07], and simulations – tests for the discrete-
event simulation engine [Zap08, KZ09]. Although sharing some common scripts, located in
the ./scripts/ directory, these sub suites are quite different. The former one is simpler
and therefore we will first discuss its structure, how its performance tests are run, and what
statistics is produced. Then, we extend our explanations to the latter sub suite.

5.1. Lumping-performance tests
An approximate structure of the lumping sub suite is as follows:

• ./scripts/awk/ – awk scripts for computing reduction factors and comparing the
probability values with the given error bound

1With disabled printing of messages about killed processes.

20

• ./scripts/sed/ – sed scripts which allow to remove unnecessary information
from the MRMC output

• ./scripts/shell/ – shell scripts for: running tests, coordinating the statistics
generation, and other supplementary scripts

• ./dtmc lumping/ – the sub suite with tests for DTMCs

• ./ctmc lumping/ – the sub suite with tests for CTMCs

• ./dtmrm lumping/ – the sub suite with tests for DMRMs

• ./ctmrm lumping/ – the sub suite with tests for CMRMs

When the lumping-performance tests are run they produce two types of statistics:

• Model-check time2 – based on the “elapsed-time” output of MRMC:

– *.performance.statistics – raw statistical-data files. A name of each
file is formed from the input-file name plus the command-line options of MRMC.

– *.performance.dat – post-processed statistical data files which are used
with gnuplot scripts to generate performance plots.

– *.performance.eps – the performance plots. These files are generated from
the corresponding *.performance.dat files.

• Memory Consumption – based on the results provided by the ps utility:

– *.TYPE.memory.statistics – raw statistical-data files. A name of each
file is formed from the input-file name plus the command-line options of MRMC.
Here TYPE ∈ {mvsz, mrss, avsz, arss}.

– *.memory.dat files – post-processed statistical data files which are used with
gnuplot scripts to generate memory-consumption plots.

– *.TYPE.memory.eps files – the memory-consumption plots. These files are
generated from the corresponding *.memory.dat files.

The memory-consumption statistics is based on the output of the standard ps utility
(Linux) which samples the memory usage of MRMC process approximately every 0.1 sec-
ond. This sampling is done only during the functional-test part of each performance test.

Note that, the ./lumping/scripts/shell/test suite.sh script, used in per-
formance testing, employs a pre-compiled bash interpreter, located in the

MRMC HOME DIR/test/performance tests/scripts/bin/bash

directory. The reason for using this binary is that, in case of a test-case timeout, MRMC
execution is terminated by invoking the kill command. If using a standard shell binary,
this procedure results in printing an unwanted text to the console. Since such bash output
breaks the structure of the test-script output, we use the modified version of bash.

In cases when it is undesirable or impossible to use the modified shell binary, one has to
substitute the first line of test suite.sh in the following manner:

Change “#!../../../scripts/bin/bash -u” into “#!bash -u”.
2Only when the value of NUMBER OF PERFORMANCE REPETITIONS is > 0, see Section 2.3

21

5.1.1. Test structure
Let us consider the lumping-test structure, using the Workstation Cluster test (wscl) as an
example. The wscl test is located in the ./lumping/ctmrm lumping/wscl directory.
To prevent this test from being executed one can modify the test list file located in the
ctmrm lumping folder. The wscl test’s directory has the following structure:

• ./mrmc WORKSTATION CLUSTER NXX/ – the test case directory. It contains a
test-invocation script and golden files. The test-case (MRMC) model is generated
from wscl.sm and wscl.csl, with the model parameter N = XX .

• ./wscl.sm – the PRISM model of Workstation Cluster.

• ./wscl.csl – the PRISM property file containing the model labeling.

• ./input list – the list of available *.input files. Here, we have only one input:
wscl01. In principle, it is possible to define several input files for the given wscl
model and to use them for evaluating performance of MRMC on several different
model-checking properties.

• ./wscl01.input – the MRMC input file. Each tests can have several inputs,
each of which is a set of MRMC command-prompt commands, that include a model-
checking property. The wscl01.input file contains the time- and reward-bounded
until property and also the quit command which is obligatory for any *.input file.

• ./option list – the list of command-line options MRMC should be invoked with:
For the same wscl01.input file, each of the option list file lines is used to
form the MRMC command-line parameters. In case of wscl, the file’s content indi-
cates that MRMC should be run three times: first in the CSRL mode without lump-
ing; second with the formula-independent lumping; third with the formula-dependent
lumping. Note that, any changes done to the option list file must be consistent
with the multiple list file.

• ./input.data.files – the list of MRMC input files. Necessary, because differ-
ent models (e. g. CTMC vs. CMRM) require different number of MRMC input files.

• ./multiple list – the number of “Total Elapsed * Time * :” lines in
the MRMC output. These numbers are related (line wise) to the options from the
option list file. Here, 1 means that if MRMC is run, e. g. with the csrl or csrl
-flump option, there is just one “elapsed-time” output, whereas for 2, e. g. for csrl
-ilump option, indicates that there are two. In case of the -ilump option, the first
output corresponds to the lumping time and the second to the model-checking time.

• ./wscl.param – the values of N with which MRMC models are generated from
the PRISM model. This file determines the X-axes values on the generated statistics
plots (produced using gnuplot). After a test execution the wscl.param file values
are copied into the first column of the (generated) *.dat file.

• ./wscl01.performance.gnuplot – the gnuplot template for the “model-
check time” statistics. This file contains several “dummy” names, as:

22

INPUT, TIME UNIT, MIN, MAX.

These are automatically substituted with the actual values by the statistics script. If
any changes are to be done to this file, they must be consistent with the changes in the
option list file.

• ./wscl01.memory.gnuplot – the template file for the memory-consumption
statistics. This file is similar to ./wscl01.performance.gnuplot.

It is important to note that:

• If a test case fails the *.out and *.diff files are placed in the corresponding directory.

• The test-case golden files (*.golden) are stored in the *.zip archive located in the test-
case directory. These files are automatically extracted during the functional part of
testing.

• The PRISM output, produced while generating MRMC models, can be found in the
*.prism.log.out file of the corresponding test-case directory.

Further, we discuss a lumping-performance test’s structure and its statistical outputs in
mode detail.

5.1.2. Test statistics
The lumping-performance tests generate two types of statistics by means of the

./lumping/scripts/shell/statistics.sh

script. Below, we discuss the resulting-statistics files in details. Note that, these files are
placed in the root of each test’s directory.

Model-Check Time Statistics:

• *.performance.statistics – Contain average model-check times for the test test-cases.
The file name is formed by the *.input file name plus the command-line options of
MRMC from the option list file. For example, in this particular case one may
expect the following statistic files:

– wscl01.csrl.performance.statistics

– wscl01.csrl.-ilump.performance.statistics

– wscl01.csrl.-flump.performance.statistics

Each of these files contains one column of values. Let us discuss how these files are
produced. For the ”wscl” test we have 7 test cases:

mrmc WORKSTATION CLUSTER N01 , . . . , mrmc WORKSTATION CLUSTER N07

In each directory TEST CASE NAME (after the test-case is finished) we have the fol-
lowing files:

23

– TEST CASE NAME.csrl.wscl01.results

– TEST CASE NAME.csrl.-ilump.wscl01.results

– TEST CASE NAME.csrl.-flump.wscl01.results

which contain “elapsed-time” information produced by MRMC for the predefined
number of test-case repetitions: NUMBER OF PERFORMANCE REPETITIONS (see
Chapter 2.3). Then, for the test case mrmc WORKSTATION CLUSTER N01 the aver-
age values are computed for each file:

– mrmc WORKSTATION CLUSTER N01.csrl.wscl01.results

– mrmc WORKSTATION CLUSTER N01.csrl.-ilump.wscl01.results

– mrmc WORKSTATION CLUSTER N01.csrl.-flump.wscl01.results

and are (respectively) placed to be the first row elements of the

– wscl01.csrl.performance.statistics

– wscl01.csrl.-ilump.performance.statistics

– wscl01.csrl.-flump.performance.statistics

files. Further, the average values for mrmc WORKSTATION CLUSTER N02 are com-
puted and placed into the second rows, and etc. For more details see:

./performance tests/scripts/awk/average.awk.

• *.performance.dat – This is the input file for the *.performance.gnuplot script. The
file is formed by placing the columns from the *.param and *.performance.statistics
files parallel to each other. Every *.input file results in its own *.performance.dat file.
For wscl, we only have: wscl01.performance.data. For more details see:

./performance tests/scripts/awk/arrange table.awk.

• *.performance.eps – Contains the plot for the data from the the corresponding *.data
file. In case of wscl test we obtain:

wscl01.performance.eps

The time units, used when generating performance statistics, are defined by the value of the
MILLISECONDS variable (see Chapter 2.3).

Memory-Consumption Statistics: Before going further, let us note that for the mem-
ory statistics we collect the following data, based on the output of the standard ps util-
ity [DC03]:

• VSIZE (Virtual memory size) – The amount of memory the process is using. This
includes the amount in RAM and the amount in swap.

• RSS (Resident Set Size) – The portion of a process that exists in physical memory
(RAM). The rest of the program exists in swap. If a computer has not used swap, this
number will be equal to VSIZE.

24

Further we assume that TYPE is one of:

• mvsz – The results for the Maximum measured VSIZE

• mrss – The results for the Maximum measured RSS

• avsz – The results for the Average measured VSIZE

• arss – The results for the Average measured RSS

Below, we describe data files produced during gathering of the memory statistics:

• *.TYPE.memory.statistics – These files are constructed out of *.memstat test-case files.
In each TEST CASE NAME directory (after the functional part of testing is finished)
we have the following files:

– TEST CASE NAME.csrl.wscl01.memstat

– TEST CASE NAME.csrl.-ilump.wscl01.memstat

– TEST CASE NAME.csrl.-flump.wscl01.memstat

Each of these files has three rows of two elements:

1. MVSZ RSS – the pair of ps results with the max VSZ

2. VSZ MRSS – the pair of ps results with the max RSS.

3. AVSZ ARSS – the average over all VSZ RSS pairs.

For more details on how AVSZ and ARSS are computed, see:

./performance tests/scripts/awk/on the fly average.awk

As a result, for every test case we have the following files:

– *.csrl.TYPE.memory.statistics

– *.csrl.-ilump.TYPE.memory.statistics

– *.csrl.-flump.TYPE.memory.statistics

They are generated in such a way that each of them has one column of TYPE values.
For example, if TYPE = avsz then the AVSZ value from:

mrmc WORKSTATION CLUSTER N01.csrl.wscl01.memstat

is placed into the first row of wscl01.avsz.memory.statistics.
The AVSZ value from:

mrmc WORKSTATION CLUSTER N02.csrl.wscl01.memstat

goes into the second row, and etc. For more details see:

./performance tests/scripts/awk/split memory statistics.awk

25

• *.memory.dat file – The input file for the corresponding *.memory.gnuplot script. This
file is formed from the *.param plus *.TYPE.memory.statistics files data. For each
*.input its own *.${TYPE}.memory.dat files are generated. In this example case it is
just: wscl01.memory.data. For more details see:

./performance tests/scripts/awk/arrange table.awk

• *.TYPE.memory.eps – Contains the plot for the values from the corresponding *.data
file. In case of wscl test we obtain:

– wscl01.mvsz.memory.eps

– wscl01.mrss.memory.eps

– wscl01.avsz.memory.eps

– wscl01.arss.memory.eps

The time units, used when generating memory statistics, are defined by the value of the
KILOBYTES variable (see Chapter 2.3).

Additional information about the lumping sub suite can be found in the comments of
the test scripts and other files.

5.2. Simulations-performance tests
An approximate structure of the simulations sub suite is as follows:

• ./scripts/sed/ – sed scripts that allow to filter tool outputs, for
TOOL ∈ { MRMC, Ymer, VESTA }:

– TOOL.main.rules – removes unnecessary data from the output of TOOL.

– TOOL.result.rules – removes all (remaining) data except for the model-
checking result.

– TOOL.sample.rules – removes all (remaining) data except for the number
of used observations.

– TOOL.time.rules – removes all (remaining) data except for the model-check
time.

• ./scripts/shell/ – shell scripts for: running tests, checking correctness of the
model-checking result, and coordinating the statistics generation.

• ./scripts/shell/invoke tools – shell scripts for tool invocations.

• ./scripts/shell/extract data – shell scripts for extracting number of sam-
ples and model-checking time from the tool outputs.

• ./scripts/shell/generate statistics – scripts used for generating all
supported types of statistics.

• ./ctmc/ – the sub suite with tests for CTMCs.

26

When the simulations-performance tests are run, for every test and each of its inputs,
test-scripts produce four types of statistics:

• Model-Check Time – similar to the files produced by the lumping sub suite:

– *.performance.dat – post-processed statistical data files which are used
with gnuplot scripts to generate “model-check time” plots.

– *.performance.eps – the “model-check time” plots, generated from the
corresponding *.performance.dat files.

• Memory Consumption – similar to the files produced by the lumping sub suite:

– *.memory.dat files – post-processed statistical data files which are used with
gnuplot scripts to generate memory-consumption plots.

– *.memory.mvsz.eps files – the memory-consumption plots, only for the
MVSZ statistics (Generated from the corresponding *.memory.dat files.).

• Actual Confidence Levels – the % of correct answers to the model-checking problem,
per tool and per test case. The % value is computed relative to the number of the test-
case repetitions.

– *.confidence.dat – post-processed statistical data files which are used with
gnuplot scripts to generate actual confidence-level plots.

– *.confidence.eps – the actual confidence-level plots, generated from the
corresponding *.confidence.dat files.

• Number of Used Observations – the average number of observations needed for ver-
ifying a given formula on a given test-case model (per tool and its command-line op-
tions). The average value is computed relative to the number of the test-case repeti-
tions.

– *.sample.dat – post-processed statistical data files which are used with gnu-
plot scripts to generate number-of-used-observations plots.

– *.sample.eps – the number-of-used-observations plots, generated from the
corresponding *.sample.dat files.

Note that, the resulting statistical data is stored in the statistics sub folder of each test.
Further, we discuss a simulations-performance test’s structure and its statistical out-

puts in mode detail.

5.2.1. Test structure
Let us consider the simulations-test structure, using the Cyclic Server Polling System
test (cps) as an example. The cps test is located in the ./simulations/ctmc/cps
directory. To prevent this test from being executed one can modify the test list file
located in the ctmc folder. The cps test’s directory has the following structure:

• ./CYCLIC POLLING NXX/ – the test case directory. It contains golden files, the
PRISM model: *.sm, and an equivalent VESTA model: *.ctmc. The test-case model

27

for MRMC is generated from the PRISM model using the *.sh script. Note that, the
value of the model parameter N = XX is hard coded into the PRISM and VESTA
models of each test case.

• ./cps.csl – the PRISM property file containing the model labelling (the same for
all test cases).

• test list – the list of enabled test cases, this list is managed the same way as
any other test list file. Note that, if a test case is disabled then one has to do
corresponding changes in the cps.param file.

• cps.param – the values of N for each test case. This file determines the X-axes
values on the generated statistics plots (produced using gnuplot). After a test exe-
cution the cps.param file values are copied into the first column of the (generated)
*.dat files.

• ./input list – the list of available inputs. The inputs here have a much more
complex structure. Each input is represented by a folder in the ./inputs directory.

• ./inputs/cps01/ – contains data related to the cps01 input:

– ./tools list – the list of tools that are going to be tested with this input,

– ./*.gnuplot – the gnuplot template scripts for generating plots for the
corresponding statistic,

– ./mrmc/ – the MRMC parameters for the cps01 input:

∗ ./common.options – the sequence of common command-line options
used in every invocation of MRMC with this input.

∗ ./files – the script for providing MRMC with the right input files.

∗ ./input – the sequence of MRMC command-prompt commands and ver-
ification properties. This file is similar to the *.input files of the lumping-
performance sub suite,

∗ ./options – the list of additional MRMC command-line options. In this
file each (not commented and possibly empty) line corresponds to a different
set of extra tool options. Remember that, common options have to be placed
in the ./common.options file. If ./options contains more than one
uncommented line, even if it is empty, the tool will be run several times,
each time taking a different set of options. This way one can, e. g., run Ymer
with and without --estimate-probabilities option, and treat these
two invocations as if they are for two different tools. This file is similar to
the option list files of the lumping-performance sub suite.

– ./vesta/ – the VESTA parameters for the input: cps01. Has the same struc-
ture as ./mrmc/.

– ./ymer/ – the Ymer parameters for the input: cps01. Has the same structure
as ./mrmc/.

28

Note that, it is possible to have tests that, as a part of one input, include running MRMC with
the same command-line options but different command-prompt parameters, e. g. cps05.
Consider the folder ./inputs/cps05, there one can find sub folders named mrmc h h a,
mrmc p o a, and alike. All of them correspond to running MRMC with the same command-
line options, and the same property to verify. The difference is only in the parameters set
from the tool’s command prompt. Basically, here each time MRMC is treated as a new
tool. For this to work, one has have tool-folder names starting with mrmc. Then, if no tool-
specific scripts are provided, e. g. for the tool named mrmc p o a, the test suite uses the
default MRMC scripts. For more details see:

./simulations/scripts/shell/test suite.sh.

5.2.2. Test statistics
The simulations-performance tests generate statistics by means of the following script:

./simulations/scripts/shell/statistics.sh

Note that, the initially-gathered statistical data is placed in the statistics sub folder
of each test case. Such a directory always contains sub folders corresponding to the en-
abled inputs. In other words, for each test case CYCLIC POLLING NXX and the input
cpsYY, where XX ∈ {03, 06, 09, 12, 15, 16, 17, 18} and YY ∈ {01, 02, 03, 04}, the
initial statistics is located inside the following folder:

./CYCLIC POLLING NXX/statistics/cpsYY

Below, we discuss the statistics-generation process and the produced files in details.

Model-Check Time Statistics: The time statistics is collected in a way similar to how
it is done for the lumping-performance tests. The model-check times are first stored in the
*.timestat files. For example, the file:

CYCLIC POLLING N03.cps01.mrmc.common.timestat

contains model-check times reported by MRMC for each of

NUMBER OF PERFORMANCE REPETITIONS

repetitions, when run on the cps01 input. Note that, the sub string “common” in the file’s
name indicates that MRMC is run with the common options, given in the file:

./cps/inputs/cps01/mrmc/common.options.

Note that, ./cps/inputs/cps01/mrmc/options only contain one empty line (i. e.
no extra options). In contrast, the files:

CYCLIC POLLING N03.cps01.ymer.common.timestat, and
CYCLIC POLLING N03.cps01.ymer.--estimate-probabilities.timestat

29

contain model-check times reported by Ymer, when run with the options defined by the con-
tent of ./cps/inputs/cps01/ymer/common.options and, respectively, the first
(empty) and second (non-empty) line of ./cps/inputs/cps01/ymer/options.

When the test runs for cps are finished the time statistics is produced by the next steps:

1. The *.performance.statistics files are produced and stored in the directory:

./cps/statistics/cpsYY

For example, cps01.mrmc.common.sample.statistics contains average,
for each test case, model-check times reported by MRMC on the cps01 input. The
corresponding files for Ymer are

cps01.ymer.common.performance.statistics, and
cps01.ymer.--estimate-probabilities.performance.statistics

The first file corresponds to running Ymer with the common options and the second
one for running Ymer with the common options with an extra option:

--estimate-probabilities,

as defined by the files: ./cps/inputs/cps01/ymer/common.options, and
./cps/inputs/cps01/ymer/options.

2. The ./cps/statistics/cpsYY.performance.dat files are produced. For
each input cpsYY the file is generated by putting the cps.param file date as the first
column and then the data from the relevant

cpsYY.*.performance.statistics

files as the subsequent columns.

3. The ./cps/statistics/cpsYY.performance.eps files are produced using
the corresponding *.dat file and the gnuplot template script:

./cps/inputs/cpsYY/performance.gnuplot.

Memory-Consumption Statistics: The “memory-consumption” statistics is produced
similar to how it is done for the lumping-performance tests. One should only take into
account that for one input we can have several different tools and each of these tools can be
run with a set of different command-line options. In essence, the main steps for generating
“memory-consumption” statistics of each kind (i. e. MVSZ, MRSS, AVSZ, ARSS) are the
same as for the “model-check time” statistics. Note that, as a result we only produce plots
for the MVSZ statistics, i. e. ./cps/statistics/cpsYY.memory.mvsz.eps. The
latter is generated using the gnuplot template script:

./cps/inputs/cpsYY/memory.gnuplot.

and the ./cps/statistics/cpsYY.memory.dat data file.

30

Actual Confidence-Levels Statistics: The main steps for generating the “actual
confidence-levels” statistics are the same as for the “model-check time” statistics.
Note that:

• The reported data can be in probability or in %, as defined by the CONFUNIT param-
eter, see Section 2.3.

• The *.confstat files, stored in the

./CYCLIC POLLING NXX/statistics/cpsYY

folders, contain a column of ones and zeroes. One corresponds to a correct, and zero
to a wrong model-checking result.

• The files of the intermediate statistics, located in the ./cps/statistics/cpsYY
folders, have an extension: *.confidence.statistics.

• As a result we produce ./cps/statistics/cpsYY.confidence.dat and
./cps/statistics/cpsYY.confidence.eps. The latter is generated using
the gnuplot script: ./cps/inputs/cpsYY/confidence.gnuplot.

Number of Used Observations Statistics: The main steps for generating the “num-
ber of used observations” statistics are the same as for the “model-check time” statistics.
Note that:

• The *.samplestat files, stored in the

./CYCLIC POLLING NXX/statistics/cpsYY

folders, contain the number of used observations as reported by the corresponding
tools. An exception is Ymer, which does not report this number. Therefore, the tool
was extended in order to provide us with the desired output. For more details on using
Ymer with the test suite see Appendix A.

• The files of the intermediate statistics, located in the ./cps/statistics/cpsYY
folders, have an extension: *.sample.statistics.

• As a result we produce ./cps/statistics/cpsYY.sample.dat and
./cps/statistics/cpsYY.sample.eps. The latter is generated using the
gnuplot script: ./cps/inputs/cpsYY/sample.gnuplot.

31

6. Contact

The development of MRMC began in 2004 in the Formal Methods and Tools group (FMT)
at the University of Twente (The Netherlands) under the supervision of Prof. Dr. Ir. Joost-
Pieter Katoen. Later, the main development of the tool was moved to the Software Modeling
and Verification group at the RWTH Aachen (Germany). At present there are several other
groups involved into the tool development, namely the Informatics for Technical Applica-
tions group at the Radboud University Nijmegen (The Netherlands), the Dependable Systems
and Software group at the University of Saarland (Germany), and the Scientific Computing
and Control Theory group at the Centrum voor Wiskunde en Informatica (The Netherlands).

If you have any questions, comments or ideas, or if you want to participate in MRMC
development, please consider the following contact information:

Name: Prof. Dr. Ir. Joost-Pieter Katoen
Relation: The MRMC team leader, 2004 – present
Affiliation: Software Modeling and Verification, RWTH Aachen, Ger-
many

Name: Dr. Ivan S. Zapreev
Relation: MRMC development, 2004 – present
Affiliation: Scientific Computing and Control Theory, Centrum voor
Wiskunde en Informatica, The Netherlands

Name: Dr. David N. Jansen
Relation: MRMC extension and optimization, 2007 – present
Affiliation: Model-Based System Development, Radboud University
Nijmegen, The Netherlands

Name: Prof. Dr.-Ing. Holger Hermanns
Relation: CTMDPI model checking, 2007 – present
Affiliation: Dependable Systems and Software, University of Saarland,
Germany

More contact information can be found on the MRMC web-page [ZJN+08].

32

http://www-i2.informatik.rwth-aachen.de/~katoen/
http://db.cwi.nl/personen/publiek/zoek_show.php4?persnr=2198
http://www.cs.ru.nl/D.Jansen/
http://depend.cs.uni-sb.de/index.php?hermanns

Bibliography

[ABFH+08] Cerion Armour-Brown, Jeremy Fitzhardinge, Tom Hughes, Nicholas Nether-
cote, Paul Mackerras, Dirk Mueller, Julian Seward, Robert Walsh, and Josef
Weidendorfer, Valgrind, http://www.valgrind.org/, 2008.

[BCD02] Andrea Bondavalli, Andrea Coccoli, and Felicita Di Giandomenico, QoS
Analysis of Group Communication Protocols in Wireless Environment, Con-
currency in Dependable Computing (Paul Ezhilchelvan and Alexander Ro-
manovsky, eds.), Kluwer Academic Publishers, 2002, pp. 169–188.

[BKKT03] P. Buchholz, J.-P. Katoen, P. Kemper, and C. Tepper, Model-checking large
structured Markov chains, Journal of Logic and Algebraic Programming 56
(2003), 69–96.

[DC03] Jake Dawley-Carr, HowTo: Profile Memory in a Linux System, http://mail.nl.
linux.org/linux-mm/2003-03/msg00077.html, 2003.

[FP04] W. Fokkink and J. Pang, Simplifying Itai-Rodeh leader election for anonymous
rings, Electronic Notes in Theoretical Computer Science 128 (2004), no. 6,
53–68.

[GSB94] Rajiv Gupta, Scott A. Smolka, and Shaji Bhaskar, On randomization in se-
quential and distributed algorithms, ACM Computing Surveys 26 (1994),
no. 1, 7–86.

[HHK00] B. Haverkort, H. Hermanns, and J.-P. Katoen, On the Use of Model Checking
Techniques for Dependability Evaluation, Symposium on Reliable Distributed
Systems (SRDS), IEEE Computer Society, 2000, pp. 228–237.

[HKMKS00] Holger Hermanns, Joost-Pieter Katoen, Joachim Meyer-Kayser, and Markus
Siegle, A Markov Chain Model Checker, Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS) (Susanne Graf and Michael
Schwartzbach, eds.), LNCS, vol. 1785, Springer, 2000, pp. 347–362.

[IR90] Alon Itai and Michael Rodeh, Symmetry breaking in distributed networks, In-
formation and Computation 88 (1990), no. 1, 60–87.

[IT90] Oliver C. Ibe and Kishor S. Trivedi, Stochastic Petri Net Models of Polling
Systems, Selected Areas in Communications 8 (1990), no. 9, 1649–1657.

[JKO+07] David N. Jansen, Joost-Pieter Katoen, Marcel Oldenkamp, Mariëlle Stoelinga,
and Ivan S. Zapreev, How Fast and Fat Is Your Probabilistic Model Checker?,

33

http://www.valgrind.org/
http://mail.nl.linux.org/linux-mm/2003-03/msg00077.html
http://mail.nl.linux.org/linux-mm/2003-03/msg00077.html

Haifa Verification Conference (HVC), LNCS, vol. 4899, Springer, 2007,
pp. 65 – 79.

[KKZJ07] Joost-Pieter Katoen, Tim Kemna, Ivan S. Zapreev, and David N. Jansen,
Bisimulation Minimisation Mostly Speeds Up Probabilistic Model Checking,
Tools and Algorithms for the Construction and Analysis of Systems (TACAS)
(Orna Grumberg and Michael Huth, eds.), LNCS, vol. 4424, Springer, 2007,
pp. 87–101.

[KNP02] M. Kwiatkowska, G. Norman, and D. Parker, PRISM: Probabilistic Symbolic
Model Checker, Modelling Techniques and Tools for Computer Performance
Evaluation (TOOLS) (T. Field, P. Harrison, J. Bradley, and U. Harder, eds.),
LNCS, vol. 2324, Springer, 2002, pp. 200–204.

[KNP06] , Symmetry Reduction for Probabilistic Model Checking, Computer
Aided Verification (CAV) (T. Ball and R. Jones, eds.), LNCS, vol. 4114,
Springer, 2006, pp. 234–248.

[KNP08a] , Prism case studies, http://www.prismmodelchecker.org/casestudies/,
2008.

[KNP08b] , Prism web-page, Workstation Cluster Example, http://www.
prismmodelchecker.org/casestudies/cluster.php, 2008.

[KZ09] Joost-Pieter Katoen and Ivan S. Zapreev, Simulation-Based CTMC Model
Checking: An Empirical Evaluation, Quantitative Evaluation of Systems
(QEST), IEEE Computer Society, 2009, www.mrmc-tool.org, pp. 31–40.

[KZH+09] Joost-Pieter Katoen, Ivan S. Zapreev, Ernst Moritz Hahn, Holger Hermanns,
and David N. Jansen, The Ins and Outs of The Probabilistic Model Checker
MRMC, Quantitative Evaluation of Systems (QEST) (Los Alamitos, Calif.),
IEEE Computer Society, 2009, www.mrmc-tool.org, pp. 167–176.

[LP02] Richard Lassaigne and Sylvain Peyronnet, Approximate verification of
probabilistic systems, Process Algebra and Probabilistic Methods, Perfor-
mance Modeling and Verification (PAPM/PROBMIV) (Holger Hermanns and
Roberto Segala, eds.), Springer, 2002, pp. 213–214.

[MKL04] Mieke Massink, Joost-Pieter Katoen, and Diego Latella, Model Checking De-
pendability Attributes of Wireless Group Communication, Dependable Sys-
tems and Networks (DSN), IEEE Computer Society, 2004, pp. 711–720.

[MNS99] Michael Mock, Edgar Nett, and Stefan Schemmer, Efficient Reliable Real-
Time Group Communication for Wireless Local Area Networks, European
Dependable Computing Conference (Jan Hlavicka, Erik Maehle, and Andrs
Pataricza, eds.), LNCS, vol. 1667, Springer, 1999, pp. 380–400.

[PZ86] A. Pnueli and L. Zuck, Verification of Multiprocess Probabilistic Protocols,
Distributed Computing 1 (1986), no. 1, 53–72.

34

http://www.prismmodelchecker.org/casestudies/
http://www.prismmodelchecker.org/casestudies/cluster.php
http://www.prismmodelchecker.org/casestudies/cluster.php
www.mrmc-tool.org
www.mrmc-tool.org

[RR98] M. K. Reiter and A. D. Rubin, Crowds: Anonymity for Web Transactions,
ACM Transactions on Information and System Security, vol. 1, ACM Press,
1998, pp. 66–92.

[Som97] Fabio Somenzi, CUDD: CU decision diagram package, http://vlsi.colorado.
edu/∼fabio/CUDD/, 1997, Public software.

[SVA04] Koushik Sen, Mahesh Viswanathan, and Gul Agha, Statistical Model Check-
ing of Black-Box Probabilistic Systems, Computer Aided Verification (CAV)
(Rajeev Alur and Doron A. Peled, eds.), LNCS, vol. 3114, Springer, 2004,
pp. 202–215.

[YKNP04] H. Younes, M. Kwiatkowska, G. Norman, and D. Parker, Numerical vs. Sta-
tistical Probabilistic Model Checking: An Empirical Study, Tools and Algo-
rithms for the Construction and Analysis of Systems (TACAS) (K. Jensen and
A. Podelski, eds.), LNCS, vol. 2988, Springer, 2004, pp. 46–60.

[YKNP06] Håkan Younes, Marta Kwiatkowska, Gethin Norman, and David Parker, Nu-
merical vs. Statistical Probabilistic Model Checking, Software Tools for Tech-
nology Transfer (STTT) 8 (2006), no. 3, 216–228.

[You05a] H. Younes, Verification and Planning for Stochastic Processes with Asyn-
chronous Events, Ph.D. thesis, Computer Science Department, Carnegie Mel-
lon University, Pittsburgh, PA, USA, 2005.

[You05b] , Ymer: A Statistical Model Checker, Computer Aided Verification
(CAV) (Kousha Etessami and Sriram K. Rajamani, eds.), LNCS, vol. 3576,
Springer, 2005, pp. 429–433.

[YS06] H. Younes and R. Simmons, Statistical Probabilistic Model Checking with
a Focus on Time-Bounded Properties, Information and Computation 204
(2006), no. 9, 1368–1409.

[Zap08] I. S. Zapreev, Model Checking Markov Chains: Techniques and Tools, Ph.D.
thesis, University of Twente, Enschede, The Netherlands, 2008.

[ZJN+08] Ivan S. Zapreev, Christina Jansen, Viet Yen Nguyen, David N. Jansen, et al.,
MRMC homepage, http://www.mrmc-tool.org/, 2008.

35

http://vlsi.colorado.edu/~fabio/CUDD/
http://vlsi.colorado.edu/~fabio/CUDD/
http://www.mrmc-tool.org/

A. Using Ymer

In order to use Ymer with the performance test suite one has to consider the following steps:

1. According to the Ymer installation instructions, the CUDD [Som97] package has to
be installed. Typically, installation of this package is a simple task, but there are two
things, one might need to take into account:

a) At least up until CUDD v2.4.1, the package does not have support for the 64-bit
architecture. If one is to compile it on a 64-bit machine then it can be done by
appending the “-m32” flag to the assignments of CPPFLAGS, ICFLAGS, and
LDFLAGS variables in the CUDD makefile (CUDD HOME DIR/Makefile).

b) The configure script of Ymer requires the CUDDDIR parameter. Its value
should be the name of the folder containing required library and header files of
CUDD. To our knowledge, if CUDD is compiled but is not installed, the required
files are located in several different folders. Thus, one has to add the following
soft links to the CUDD HOME DIR/include folder:

• libcudd.a -> ../cudd/libcudd.a

• libdddmp.a -> ../dddmp/libdddmp.a

• libepd.a -> ../epd/libepd.a

• libmtr.a -> ../mtr/libmtr.a

• libst.a -> ../st/libst.a

• libutil.a -> ../util/libutil.a

2. Because Ymer uses CUDD, it does not support 64-bit architecture as well. In or-
der to overcome this problem, simply add the “-m32” flag to the assignments of
AM CPPFLAGS, AM CFLAGS, and AM LDFLAGS variables in the template makefile
(YMER HOME DIR/Makefile.am) of Ymer.

3. At this point, the Ymer sources can be configured by running:

./configure CUDDDIR=CUDD HOME DIR/include

4. In order to fix some minor source-code problems and to add output, required by the
MRMC test suite, YMER HOME DIR/ymer.cc has to be modified . The modifica-
tions that have to be done are indicated by the following listing in Figure A.1:

5. Now, Ymer is ready for the test suite and can be compiled by running its make file.

36

>>diff ymer.cc ymer.old.cc
25d24
< #include <math.h>
411c410
< /* if (optopt == ’?’) {*/

> if (optopt == ’?’) {
414c413
< /* } */

> }
716d714
< std::cout << "Sampled states: " << total_path_lengths << std::endl;

Figure A.1.: Modifying Ymer

37

	1 Introduction
	2 General details
	2.1 What is that we are testing?
	2.2 Top-level test-suite structure
	2.3 Configuring tests
	2.4 Common test-suite files

	3 Managing tests
	3.1 Running
	3.1.1 Internal and functional tests
	3.1.2 Lumping-performance tests
	3.1.3 Simulation-performance tests

	3.2 Stopping
	3.3 Cleaning

	4 Internal and functional tests
	5 Performance tests
	5.1 Lumping-performance tests
	5.1.1 Test structure
	5.1.2 Test statistics

	5.2 Simulations-performance tests
	5.2.1 Test structure
	5.2.2 Test statistics

	6 Contact
	A Using Ymer

