
Bisimulation minimisation mostly speeds up

probabilistic model checking

Joost-Pieter Katoen1,2, Tim Kemna2, Ivan Zapreev1,2 and David N. Jansen2,1

1 Software Modeling and Verification Group, RWTH Aachen, Germany
2 Formal Methods and Tools, University of Twente, The Netherlands

Abstract. This paper studies the effect of bisimulation minimisation in
model checking of monolithic discrete-time and continuous-time Markov
chains as well as variants thereof with rewards. Our results show that—as
for traditional model checking—enormous state space reductions (up to
logarithmic savings) may be obtained. In contrast to traditional model
checking, in many cases, the verification time of the original Markov chain
exceeds the quotienting time plus the verification time of the quotient.
We consider probabilistic bisimulation as well as versions thereof that
are tailored to the property to be checked.

1 Introduction

Probabilistic model checking enjoys a rapid increase of interest from different
communities. Software tools such as PRISM [31] (with about 4,000 downloads),
MRMC [29], and LiQuor [4] support the verification of Markov chains or variants
thereof that exhibit nondeterminism. They have been applied to case studies
from areas such as randomised distributed algorithms, planning and AI, security,
communication protocols, biological process modeling, and quantum computing.
Probabilistic model checking engines have been integrated in existing tool chains
for widely used formalisms such as stochastic Petri nets [11], Statemate [9],
and the stochastic process algebra PEPA [24], and are used for a probabilistic
extension of Promela [4].

The typical kind of properties that can be checked is time-bounded reach-
ability properties—“Does the probability to reach a certain set of goal states
(by avoiding bad states) within a maximal time span exceed 1

2?”—and long-run
averages—“In equilibrium, does the likelihood to leak confidential information
remain below 10−4?” Extensions for cost-based models allow for checking more
involved properties that refer to e. g., the expected cumulated cost or the in-
stantaneous cost rate of computations. Intricate combinations of numerical or
simulation techniques for Markov chains, optimisation algorithms, and tradi-
tional LTL or CTL model-checking algorithms result in simple, yet very efficient
verification procedures. Verifying time-bounded reachability properties on mod-
els of tens of millions of states usually is a matter of seconds.

Like in the traditional setting, probabilistic model checking suffers from state
space explosion: the number of states grows exponentially in the number of

system components and cardinality of data domains. To combat this problem,
various techniques have been proposed in the literature. Variants of binary de-
cision diagrams (multi-terminal BDDs) have been (and still are) successfully
applied in PRISM [31] to a range of probabilistic models, abstraction-refinement
has been applied to reachability problems in MDPs [12], partial-order reduction
techniques using Peled’s ample-set method have been generalised to MDPs [19],
abstract interpretation has been applied to MDPs [36], and various bisimulation
equivalences and simulation pre-orders allow model aggregation prior to model
checking, e. g., [7, 39]. Recently proposed techniques include abstractions of prob-
abilities by intervals combined with three-valued logics for DTMCs [15, 25, 26],
stochastic ordering techniques for CSL model checking [8], abstraction of MDPs
by two-player stochastic games [32], and symmetry reduction [33].

The purpose of this paper is to empirically investigate the effect of strong
bisimulation minimisation in probabilistic model checking. We hereby focus on
fully probabilistic models such as discrete-time and continuous-time Markov
chains (DTMCs and CTMCs, for short), and variants thereof with costs. The
advantages of probabilistic bisimulation [34] in this setting are manifold. It pre-
serves the validity of PCTL [20] and CSL [2, 6] formulas, variants of CTL for the
discrete- and continuous-time probabilistic setting, respectively. It implies ordi-
nary lumpability of Markov chains [10], an aggregation technique for Markov
chains that is applied in performance and dependability evaluation since the
1960s. Quotient Markov chains can be obtained in a fully automated way. The
time complexity of quotienting is logarithmic in the number of states, and lin-
ear in the number of transitions—as for traditional bisimulation minimisation—
when using splay trees (a specific kind of balanced tree) for storing partitions
[14]. Besides, probabilistic bisimulation can be used for obtaining (coarser) ab-
stractions that are tailored to the properties of interest (as we will see), and
enjoys the congruence property for parallel composition allowing compositional
minimisation. We consider explicit model checking as the non-trivial interplay
between bisimulation and MTBDDs would unnecessarily complicate our study;
such symbolic representations mostly grow under bisimulation minimisation [23].

Thanks to extensive studies by Fisler and Vardi [16–18], it is known that
bisimulation minimisation for LTL model checking and invariant verification
leads to drastic state space reductions (up to logarithmic savings) but at a time
penalty: the time to minimise and model check the resulting quotient Kripke
structure significantly exceeds the time to verify the original model. This pa-
per considers these issues in probabilistic (i. e., PCTL and CSL) model check-
ing. To that end, bisimulation minimisation algorithms have been realised in
the prototypical explicit-state probabilistic model checker MRMC, several case
studies have been considered that are widely studied in the literature (and can
be considered as benchmark problems), and have been subjected to various ex-
periments. This paper presents our results. As expected, our results show that
enormous state space reductions (up to logarithmic savings) may be obtained.
In contrast to the results by Fisler and Vardi [16–18], the verification time of the
original Markov chain mostly exceeds the quotienting time plus the verification

time of the quotient. This effect is stronger for probabilistic bisimulation that
is tailored to the property to be checked and for model checking Markov chains
with costs (i. e., rewards). This is due to the fact that probabilistic model check-
ing is more time-consuming than traditional model checking, while minimization
w. r. t. probabilistic bisimulation is only slightly slower than for traditional bisim-
ulation.

The paper is organised as follows. Section 2 introduces the considered proba-
bilistic models. Section 3 considers probabilistic bisimulation and the algorithms
used. Section 4 presents the considered case studies, the obtained results, and
analyses these results. Section 5 concludes the paper.

2 Preliminaries

DTMCs. Let AP be a fixed, finite set of atomic propositions. A (labelled) DTMC
D is a tuple (S,P, L) where S is a finite set of states, P : S × S → [0, 1] is a
probability matrix such that

∑

s′∈S P(s, s′) = 1 for all s ∈ S, and L : S → 2AP

is a labelling function which assigns to each state s ∈ S the set L(s) of atomic
propositions that hold in s. A path through a DTMC is a sequence1 of states
σ = s0 s1 s2 . . . with P(si, si+1) > 0 for all i. Let Path

D denote the set of all
paths in DTMC D. σ[i] denotes the (i+1)th state of σ, i. e., σ[i] = si.

The logic PCTL. Let a ∈ AP, probability p ∈ [0, 1], k ∈ N (or k = ∞) and ⊲⊳
be either ≤ or ≥. The syntax of Probabilistic CTL (PCTL) [20] is defined by:

Φ ::= tt
∣

∣

∣
a

∣

∣

∣
Φ ∧ Φ

∣

∣

∣
¬Φ

∣

∣

∣
P⊲⊳ p(Φ U≤k Φ).

A state s satisfies P⊲⊳ p(Φ U≤k Ψ) if { σ ∈ Path
D(s) | σ |= Φ U≤k Ψ } has a

probability that satisfies ⊲⊳ p. A path σ satisfies Φ U≤k Ψ if within k steps a Ψ -
state is reached, and all preceding states satisfy Φ. That is, if σ[j] |= Ψ for some
j ≤ k, and σ[i] |= Φ for all i < j. We define the abbreviation 3

≤kΦ := tt U≤k Φ.
The unbounded until formula that is standard in temporal logics is obtained by
taking k = ∞, i. e., Φ U Ψ = Φ U≤∞ Ψ .2

Given a set F of PCTL formulas, we denote with PCTLF the smallest set of
formulas that contains F and is closed under the PCTL operators ∧, ¬, and U .

Verifying hop-constrained probabilistic reachability. PCTL model checking [20]
is carried out in the same way as verifying CTL by recursively computing the
set Sat(Φ) = { s ∈ S | s |= Φ }. The probability of { σ | σ |= Φ U≤k Ψ } is the
least solution of the following linear equation system. Let S1 = { s | s |= Ψ },
S0 = { s | s |= ¬Φ ∧ ¬Ψ }, and S? = { s | s |= Φ ∧ ¬Ψ } = S \ (S1 ∪ S0).

ProbD(s, Φ U≤k Ψ) =















1 if s ∈ S1
∑

s′∈S

P(s, s′) · ProbD(s′, Φ U≤k−1 Ψ) if s ∈ S? ∧ k > 0

0 otherwise

1 In this paper, we do not dwell upon the distinction between finite and infinite paths.
2 For simplicity, we do not consider the next operator.

One can simplify this system by replacing S0 by U0 = S0 ∪ { s ∈ S? | ¬∃σ ∈
Path

D(s) : σ |= Φ U Ψ }. If k = ∞, one may also replace S1 by U1 = S1 ∪ { s ∈
S? | ∀σ ∈ Path

D(s) : σ |= Φ U Ψ }. The sets U0 and U1 can be found via a simple
graph analysis (a depth-first search) in time O(|S|+|P|).

Alternatively, the probabilities can be calculated by making the states s 6∈ S?

absorbing as follows. For DTMC D = (S,P, L) and A ⊆ S, let D[A] be the
DTMC (S,P[A], L) where the states in A are made absorbing: If s ∈ A, then
P[A](s, s) = 1 and P[A](s, s′) = 0 for s′ 6= s. Otherwise, P[A](s, s′) = P(s, s′).

Let πD(s
k
 s′) denote the probability of being in state s′ after exactly k steps

in DTMC D when starting in s. Then:

ProbD(s, Φ U≤k Ψ) =
∑

s′∈S1

πD[S0∪S1](s
k
 s′).

Calculating ProbD(s, Φ U≤k Ψ) thus amounts to computing (P[S0 ∪ S1])
k·ιS1 ,

where ιS1(s) = 1 if s ∈ S1, and 0 otherwise.

CTMCs. A (labelled) CTMC C is a tuple (S,P, E, L) where (S,P, L) is a DTMC
and E : S → R≥0 provides the exit rate for each state. The probability of taking
a transition from s within t time units equals 1 − e−E(s)·t. The probability of
taking a transition from state s to state s′ within time t is given by: P(s, s′) ·
(1 − e−E(s)·t).

A path through a CTMC is a sequence of states and sojourn times σ =
s0 t0 s1 t1 . . . with P(si, si+1) > 0 and ti ∈ R≥0 for all i. Let Path

C denote the
set of all paths in CTMC C.

Uniformisation. In a uniform CTMC, the exit rate of all states is the same.
A non-uniform CTMC can be uniformized by adding self loops as follows: let
C = (S,P, E, L) be a CTMC and choose Ẽ ≥ maxs∈S E(s). Then, Unif Ẽ(C) =

(S,P′, E′, L) where E′(s) = Ẽ for all s, P′(s, s′) = E(s)P(s, s′)/Ẽ if s 6= s′ and
P′(s, s) = 1 −

∑

s′ 6=s P′(s, s′). The probability to be in a given state at a given
time in the uniformized CTMC is the same as the one in the original CTMC.

The logic CSL. Continuous stochastic logic (CSL, [6]) is similar to PCTL. For
a, p and ⊲⊳ as before, time bounds t1 ∈ [0,∞) and t2 ∈ [t1,∞], the syntax is:

Φ ::= tt
∣

∣

∣
a

∣

∣

∣
Φ ∧ Φ

∣

∣

∣
¬Φ

∣

∣

∣
P⊲⊳ p(Φ U [t1,t2] Φ)

∣

∣

∣
S⊲⊳ p(Φ)

A state s satisfies P⊲⊳ p(Φ U [t1,t2] Ψ) if the set of timed paths { σ ∈ Path
C(s) |

σ |= Φ U [t1,t2] Ψ } has a probability ⊲⊳ p. A timed path satisfies Φ U [t1,t2] Ψ if
within time t ∈ [t1, t2] a Ψ -state is reached, and all preceding states satisfy Φ.
We will mostly let t1 = 0 and denote this as Φ U≤t2 Ψ . A state s satisfies the
formula S⊲⊳ p(Φ) if the steady-state probability to be in a Φ-state (when starting
in s) satisfies the constraint ⊲⊳ p.

CSL model checking [2, 6] can be implemented as follows. The operator S can
be solved by a (standard) calculation of the steady-state probabilities together

with a graph analysis. For the time-bounded until operator, note that, after
uniformisation the probability to take k steps within time t does not depend
on the actual states visited. This probability is Poisson distributed, and the
probability to satisfy the until formula within k steps is calculated using the
PCTL algorithm. The total probability is an infinite sum over all k, which can
be approximated well.

Rewards. A discrete-time Markov reward model (DMRM) Dr is a tuple (D, r)
where D is a DTMC and r : S → R≥0 is a reward assignment function. The
quantity r(s) indicates the reward that is earned on leaving state s. Rewards
could also be attached to edges in a DTMC, but this does not increase expres-
sivity. A path through a DMRM is a path through its DTMC, i. e., sequence of
states σ = s0 s1 s2 . . . with P(si, si+1) > 0 for all i.

Let a, p and k be as before, and r ∈ R≥0 be a nonnegative reward bound. The
two main operators that extend PCTL to Probabilistic Reward CTL (PRCTL)

[1] are P⊲⊳ p(Φ U≤k
≤r Ψ) and E=k

≤r (Φ). The until-operator is equipped with a bound
on the maximum number (k) of allowed hops to reach the goal states, and a
bound on the maximum allowed cumulated reward (r) before reaching these
states. Formula E=k

≤r (Φ) asserts that the expected cumulated reward in Φ-states
until the k-th transition is at most r. Thus, in order to check the validity of this
formula for a given path, all visits to Φ-state are considered in the first k steps
and the total reward that is obtained in these states; the rewards earned in other
states or earned in Φ-states after the first k steps are not relevant. Whenever
the expected value of this quantity over all paths that start in state s is at most
r, state s |= E=k

≤r (Φ).
A continuous-time Markov reward model (CMRM) Cr is a tuple (C, r) where

C is a CTMC and r : S → R≥0 is a reward assignment function (as before). The
quantity r(s) indicates that if t time units are spent in state s, a reward r(s) · t
is acquired. A path through a CMRM is a path through its underlying CTMC.
Let σ = s0 t0 s1 t1 . . . be a path. For t =

∑k−1
j=0 tj + t′ with t′ ≤ tk we define

r(σ, t) =
∑k−1

j=0 tj · r(sj) + t′ · r(sk), the cumulative reward along σ up to time t.

CSRL [5] is a logic that extends CSL with one operator P⊲⊳ p(Φ U≤t
≤r Ψ)

to express time- and reward-bounded properties. Checking this property of a
CMRM is difficult. One can either approximate the CMRM by a discretisation
of the rewards or compute for each (untimed) path the probability to meet
the bound and sum them up. Reward-bounded until properties of a CMRM
can be checked via a transformation of rewards into exit rates and checking a
corresponding time-bounded until property [5].

3 Bisimulation

Bisimulation. Let D = (S,P, L) be a DTMC and R an equivalence relation on
S. The quotient of S under R is denoted S/R. R is a strong bisimulation on D
if for s1 R s2:

L(s1) = L(s2) and P(s1, C) = P(s2, C) for all C in S/R.

s1 and s2 in D are strongly bisimilar, denoted s1 ∼d s2, if there exists a strong
bisimulation R on D with s1 R s2. Strong bisimulation [10, 24] for CTMCs, that
implies ordinary lumpability, is a mild variant of the notion for the discrete-time
probabilistic setting: in addition to the above, it is also required that the exit
rates of bisimilar states are equal: E(s1) = E(s2).

Measure-driven bisimulation. Requiring states to be equally labelled with all
atomic propositions is rather strong if one is interested in checking formulas that
just refer to a (small) subset of propositions, or more generally, sub-formulas.
The following notion weakens the labelling requirement in strong bisimulation
by requiring equal labellling for a set of PCTL formulas F . Let D = (S,P, L) be
a DTMC and R an equivalence relation on S. R is a F -bisimulation on D if for
s1 R s2:

s1 |= Φ ⇐⇒ s2 |= Φ for all Φ ∈ F and P(s1, C) = P(s2, C) for all C ∈ S/R.

States s1 and s2 are F -bisimilar, denoted s1 ∼F s2, if there exists an F -
bisimulation R on D with s1 R s2. F -bisimulation on CTMCs (for a set of
CSL formulas F) is defined analogously [5]. Note that strong bisimilarity is F -
bisimilarity for F = AP.

Preservation results. Aziz et al. [3] have shown that strong bisimulation is sound
and complete with respect to PCTL (and even PCTL∗):

Proposition 1. Let D be a DTMC, R a bisimulation and s an arbitrary state
of D. Then, for all PCTL formulas Φ, s |=D Φ ⇐⇒ [s]R |=D/R Φ.

This result can be generalised to F -bisimulation in the following way:

Proposition 2. Let D be a DTMC, R an F -bisimulation and s an arbitrary
state of D. Then, for all PCTLF formulas Φ, s |=D Φ ⇐⇒ [s]R |=D/R Φ.

Similar results hold for CSL and bisimulation on CTMCs [6], for PRCTL on
DMRM, and for CSRL on CMRM.

Bisimulation minimisation. The preservation results suggest that one can ver-
ify properties of a Markov chain on a bisimulation quotient. The next issue to
consider is how to obtain the quotient. An often used algorithm (called partition
refinement) is based on splitting: Let Π be a partition of S. A splitter for some
block B ∈ Π is a block Sp ∈ Π such that the probability to enter Sp is not
the same for each state in B. In this case, the algorithm splits B into subblocks
such that each subblock consists of states s with identical P(s, Sp). This step is
repeated until a fixpoint is reached. The final partition is the coarsest bisimu-
lation that respects the initial partition. The worst-case time complexity of this
algorithm is O(|P| log |S|) provided that splay trees are used to store blocks [14].
These data structures are adopted in our implementation.3

3 In practice, an implementation using red-black trees is often slightly faster, although
this raises the theoretical complexity to O(|P| log2 |S|), cf. [13, Section 3.4].

Initial partition. The choice of initial partition in the partition refinement al-
gorithm determines what kind of bisimulation the result is. If we group states
labelled with the same atomic propositions together, the result is the strong
bisimulation quotient S/∼d. If we choose the initial partition according to the
satisfaction of formulas in F , the resulting partition is the F -bisimulation quo-
tient S/∼F . To get the smallest bisimulation quotient, it is important to start
with a coarse initial partition. Instead of only calculating the strong bisimulation
quotient, we will also use measure-driven bisimulation for a suitable set F .

A naive approach for formula P⊲⊳ p(Φ U Ψ) is to choose F = {Ψ, Φ∧¬Ψ }. In
fact, P⊲⊳ p(Φ U Ψ) is not in PCTLF , but the equivalent formula P⊲⊳ p(Φ∧¬Ψ U Ψ)
is. This yields an initial partition consisting of the sets S1 = Sat(Ψ), S? =
Sat(Φ∧¬Ψ) and S0 = S\(S1∪S?) (cf. Section 2). Note that selecting F = {Ψ, Φ }
would lead to a less efficient initial partition with four blocks instead of three. We
improve this initial partition by replacing S0 by U0 = Sat(P≤0(Φ U Ψ)) and S1

by U1, which is essentially4 Sat(P≥1(Φ U Ψ)). (Defining U0 and U1 as satisfaction
sets of some formula has the advantage that we can still use Proposition 2.) The
sets of states U0 and U1 can be collapsed into single states u0 and u1, respectively.
This results in the initial partition { {u0}, {u1}, S \ (U0 ∪ U1) }.

For bounded until, one can still use U0, but not U1, since the fact that
(almost) all paths satisfy Φ U Ψ does not imply that these paths reach a Ψ -state
within the step or time bound. Therefore, for this operator the initial partition
is { {u0}, {s1}, S \ (U0 ∪ S1) } with u0 as before and s1 the collapsed state for
S1.

5 Thus, for bounded until the measure-driven initial partition is finer than
for unbounded until. In the experiments reported in the next section, the effect
of the granularity of the initial partition will become clear.

4 Experiments

To study the effect of bisimulation in model checking, we realised the minimisa-
tion algorithms in MRMC and applied them to a variety of case studies, most of
which can be obtained from the PRISM webpage.6 We used PRISM to specify
the models and generate the Markov chains. Subsequently, the time and memory
requirements have been considered for verifying the chains (by MRMC), and for
minimising plus verifying the lumped chain (both by MRMC). All experiments
were conducted on a 2.66 GHz Pentium 4 processor with 1 GB RAM running
Linux. All reported times are in milliseconds and are obtained by taking the
average of running the experiment 10 times.

4.1 Discrete time

Crowds protocol [38]. This protocol uses random routing within a group of nodes
(a crowd) to establish a connection path between a sender and a receiver. Rout-

4 Up to states s where the set {σ ∈ Path
D(s) | σ 6|= Φ U Ψ } is only almost empty.

5 For the sake of brevity, we omit the details for the optimal initial partition for
time-bounded until-formulas of the form U [t1,t2] with 0 < t1.

6 see http://www.cs.bham.ac.uk/dxp/prism/index.php.

ing paths are reconstructed once the crowd changes; the number of such new
route establishments is R, and is an important parameter that influences the
state space. Random routing serves to hide the secret identity of a sender. The
table below summarises the results for checking P≤p(3observe) where observe

characterises a situation in which the sender’s id is detected. The parameter N
in the first column is the number of honest crowd members; our models include
N/5 dishonest members. The second column shows parameter R. The next three
columns indicate the size of the state space of the DTMC (i. e., |S|), the number
of transitions (i. e., the number of non-zero entries in P), and the verification
time. The next three columns indicate the number of states in the quotient
DTMC, the time needed for obtaining this quotient, and the time to check the
validity of the same formula on the quotient. The last two columns indicate
the reduction factor for the number of states and total time. Note that we ob-
tain large state space reductions. Interestingly, in terms of time consumption,
quotienting obtains a reduction in time of about a factor 4 to 7.

original DTMC lumped DTMC red. factor

N R states transitions ver. time blocks lump time ver. time states time
5 3 1198 2038 3.2 53 0.6 0.3 22.6 3.7
5 4 3515 6035 11 97 2.0 0.5 36.2 4.4
5 5 8653 14953 48 153 6.0 0.9 56.6 6.9
5 6 18817 32677 139 209 14 1.4 90.0 9.0

10 3 6563 15143 24 53 4.6 0.2 124 4.9
10 4 30070 70110 190 97 29 0.5 310 6.4
10 5 111294 261444 780 153 127 0.9 727 6.1
10 6 352535 833015 2640 221 400 1.4 1595 6.6
15 3 19228 55948 102 53 23 0.2 363 4.4
15 4 119800 352260 790 97 190 0.5 1235 4.1
15 5 592060 1754860 4670 153 1020 0.9 3870 4.6
15 6 2464168 7347928 20600 221 4180 1.5 11150 4.9

Leader election [28]. In this protocol, N nodes that are arranged in an unidi-
rectional ring select an identity randomly according to a uniform distribution
on { 1, . . . , K }. By means of synchronous message passing, processes send their
identity around the ring. The protocol terminates once a node has selected a
unique id (the node with the highest unique id becomes the leader); if no such
node exists, the protocol restarts. The property of interest is the probability to
elect a leader within a certain number of rounds: P≤q(3

≤(N+1)·3 leader elected).
The obtained results are summarised in the table below. For a fixed N , the num-
ber of blocks is constant. This is due to the fact that the initial state is the only
probabilistic state and that almost all states that are equidistant w. r. t. this ini-
tial state are bisimilar. For N = 4, no gain in computation time is obtained due
to the relatively low number of iterations needed in the original DTMC. When N
increases, bisimulation minimisation also pays off timewise; in this case a small
reduction of the time is obtained (more iterations are needed due to the bound
in the until-formula that depends on N).

original DTMC lumped DTMC red. factor

N K states transitions ver. time blocks lump time ver. time states time
4 2 55 70 0.02 10 0.05 0.01 5.5 0.4
4 4 782 1037 0.4 10 0.5 0.01 78.2 0.8
4 8 12302 16397 7.0 10 9.0 0.01 1230 0.8
4 16 196622 262157 165.0 10 175 0.01 19662 0.9
5 2 162 193 0.1 12 0.1 0.02 13.5 0.9
5 4 5122 6145 2.8 12 2.9 0.02 427 0.9
5 6 38882 46657 28 12 26 0.02 3240 1.1
5 8 163842 196609 140 12 115 0.02 13653 1.2

Cyclic polling server [27]. This standard example in performance analysis con-
siders a set of stations that are allowed to process a job once they possess the
token. The single token circulates among the stations. The times for passing a
token to a station and for serving a job are all distributed exponentially. We
consider the DTMC that is obtained after uniformisation, and check the for-
mula: P⊲⊳p(

∧N
j 6=1 ¬servej U serve1), i. e. with probability ⊲⊳ p station 1 will be

served before any other station, as well as a time-bounded version thereof.7

Ordinary (strong) bisimulation yields no state-space reduction. The results for
measure-driven bisimulation minimisation are summarised below. In checking
the bounded until formula, we used the naive initial partition { {s0}, {s1}, S? }.
The improved initial partition with {u0} would have led to almost the same num-
ber of blocks as the unbounded until, e. g. 46 instead of 151 blocks for N = 15.
For both formulas, large reductions in state space size as well as computation
time are obtained; the effect of {u0} on the number of blocks is also considerable.

time-bounded until unbounded until
original DTMC lumped DTMC red. factor lumped DTMC red. factor

N states transitions time U≤t time U blocks time states time blocks time states time
4 96 368 1.4 2.1 19 0.4 5.1 3.5 12 0.9 8 2.3
6 576 2784 10 11 34 1.2 16.9 8.3 18 1.4 32 7.9
8 3072 17920 62 52 53 4.0 58 15.5 24 2.9 128 17.9
12 73728 577536 3050 3460 103 120 716 25.4 36 55 2048 62.9
15 737280 6881280 39000 32100 151 1590 4883 24.5 45 580 16384 55.3

Randomised mutual exclusion [37]. In this mutual exclusion algorithm, N pro-
cesses make random choices based on coin tosses to ensure that they can all enter
their critical sections eventually, although not simultaneously. The following ta-
ble summarizes our results for verifying the property that process 1 is the first to
enter the critical section, i. e., the PCTL formula P≤q(

∧N
j 6=1 ¬enterj U enter1).

strong bisimulation F -bisimulation
original DTMC lumped DTMC red. factor lumped DTMC red. factor

N states transitions ver. time blocks lump time ver. time states time blocks time states time
3 2368 8272 3.0 1123 8.0 1.6 2.1 0.3 233 2.9 10.2 1.0
4 27600 123883 47.0 5224 192 19 5.3 0.4 785 29 35.2 1.6
5 308800 1680086 837 18501 2880 120 16.7 0.3 2159 507 143 1.7
6 3377344 21514489 9589 – > 107 – – – 5166 7106 653 1.4

Due to the relatively high number of transitions, quotienting the DTMC ac-
cording to AP-bisimilarity is computationally expensive, and takes significantly

7 For the sake of comparison, the unbounded until-formula is checked on the uni-
formised and not on the embedded DTMC.

more time than verifying the original DTMC. However, measure-driven bisimi-
larity yields a quotient that is roughly an order of magnitude smaller than the
quotient under AP-bisimilarity. Due to the coarser initial partition, this quotient
is constructed rather fast. In this case, verifying the original model is more time
consuming.

4.2 Continuous time

Workstation cluster [22]. This case study considers a system consisting of two
clusters of workstations connected via a backbone. Each cluster consists of N
workstations, connected in a star topology with a central switch that provides the
interface to the backbone. Each component can break down according to a failure
distribution. A single repair unit is available to repair the failed components. The
number of correctly functioning workstations determines the level of quality of
service (QoS). The following two tables summarise the results for checking the
probability that:

– In the long run, premium QoS will be delivered in at least 70% of the cases;
– QoS drops below minimum QoS within 40 time-units is at most 0.1;
– QoS goes from minimum to premium between 20 and 40 time units.

The last property involves a sequence of two transient analyses on different
CTMCs. The results for the long-run property:

original CTMC lumped CTMC red. factor

N states transitions ver. time blocks lump time ver. time states time
8 2772 12832 3.6 1413 12 130 2 0.03

16 10132 48160 21 5117 64 770 2 0.03
32 38676 186400 114 19437 290 215 2 0.2
64 151060 733216 730 75725 1360 1670 2 0.2

128 597012 2908192 6500 298893 5900 14900 2 0.2
256 2373652 11583520 103000 1187597 25400 175000 2 0.2

The plain verification time of the quotient is larger than of the original CTMC,
despite a state space reduction of a factor two. This is due to the fact that the
subdominant eigenvalues of the Gauss-Seidel iteration matrices differ significantly—
the closer this value is to one, the slower the convergence rate for the iterative
Gauss-Seidel method. For instance for N = 8, the values of the original (0.156)
and the quotient (0.993) are far apart and the number of iterations needed dif-
fer for about two orders of magnitude. The same applies for N = 16. These
differences are much smaller for larger values of N .

The results for time-bounded reachability:

time-bounded until [0, 40] time-bounded until [20, 40]
original CTMC lumped CTMC red. factor lumped CTMC red. factor

N states transitions ver. time ver. time blocks time states time blocks time states time

U≤40 U [20,40]

8 2772 12832 36 49 239 16.3 11.6 2.2 386 24.0 7.2 2.0
16 10132 48160 360 480 917 70 11.0 5.1 1300 96.0 7.8 5.0
32 38676 186400 1860 2200 3599 300 10.7 6.2 4742 430 8.2 5.1
64 151060 733216 7200 8500 14267 1810 10.6 4.0 18082 2550 8.4 3.3

128 597012 2908192 29700 33700 56819 9300 10.5 3.2 70586 12800 8.5 2.6
256 2373652 11583520 121000 143000 226787 45700 10.5 2.6 278890 60900 8.5 2.3

These results are obtained using a measure-driven bisimulation. In contrast, for
an AP-bisimulation, we only obtained a 50% state-space reduction. For measure-
driven bisimulation another factor 4–5 reduction is obtained. The reduction fac-
tors obtained for this case study are not so high, as its formal (stochastic Petri
net) specification already exploits some lumping; e. g., workstations are modeled
by anonymous tokens.

IEEE 802.11 group communication protocol [35]. This is a variant of the cen-
tralized medium access protocol of the IEEE 802.11 standard for wireless local
area networks. The protocol is centralized in the sense that medium access is
controlled by a fixed node, the Access Point (AP). The AP polls the wireless
stations, and on receipt of a poll, stations may broadcast a message. Stations
acknowledge the receipt of a message such that the AP is able to detect whether
or not all stations have correctly received the broadcast message. In case of a
detected loss, a retransmission by the originator takes place. It is assumed that
the number of consecutive losses of the same message is bounded by OD, the
omission degree. This all refers to time-critical messages; other messages are sent
in another phase of the protocol. The property of interest is, as in [35] and other
studies of this protocol, the probability that a message originated by the AP
is not received by at least one station within the duration of the time-critical
phase, i. e., t = 2.4 milliseconds, i. e., P⊲⊳p(3

≤24000fail) where fail identifies all
states in which more than OD losses have taken place. The following table re-
ports the results for the verification of this property for different values of OD
and the minimization results for a measure-driven bisimulation.

original CTMC lumped CTMC red. factor

OD states transitions ver. time blocks lump + ver. time states time
4 1125 5369 121.9 71 13.5 15.9 9.00

12 37349 236313 7180 1821 642 20.5 11.2
20 231525 1590329 50133 10627 5431 21.8 9.2
28 804837 5750873 195086 35961 24716 22.4 7.9
36 2076773 15187833 5103900 91391 77694 22.7 6.6
40 3101445 22871849 7725041 135752 127489 22.9 6.1

We obtain a state space reduction of about a factor 22, which results in an
efficiency improvement of a factor 5 to 10. The reason that the verification times
are rather excessive for this model stems from the fact that the time bound
(24000) is very large, resulting in many iterations. These verification times can
be improved by incorporating an on-the-fly steady-state detection procedure [30],
but this is not further considered here.

Simple P2P protocol [33]. This case study describes a simple peer-to-peer pro-
tocol based on BitTorrent—a “torrent” is a small file which contains metadata
about the files to be shared and about the host computer that coordinates the
file distribution. The model comprises a set of clients trying to download a file
that has been partitioned into K blocks. Initially, there is a single client that has
already obtained all blocks and N additional clients with no blocks. Each client
can download a block (lasting an exponential delay) from any of the others but
they can only attempt four concurrent downloads for each block. The following

table summarises our minimisation results using AP-bisimilarity in columns 3
through 6. The property of interest is the probability that all blocks are down-
loaded within 0.5 time units. The last columns list the results for a recently
proposed symmetry reduction technique for probabilistic systems [33] that has
been realised in PRISM.

bisimulation minimisation symmetry reduction
original CTMC lumped CTMC red. factor reduced CTMC red. factor

N states ver. time blocks lump time ver. time states time states red. time ver. time states time
2 1024 5.6 56 1.4 0.3 18.3 3.3 528 12 2.9 1.93 0.38
3 32768 410 252 170 1.3 130 2.4 5984 100 59 5.48 2.58
4 1048576 22000 792 10200 4.8 1324 2.2 52360 360 820 20.0 18.3

We observe that bisimulation minimisation leads to a significantly stronger state-
space reduction than symmetry reduction. For N = 3 and N = 4, bisimulation
minimisation leads to a state-space reduction of more than 23 and 66 times,
respectively, the reduction of symmetry reduction. Symmetry reduction is—as
expected—much faster than bisimulation minimisation, but this is a somewhat
unfair comparison as the symmetries are indicated manually. These results sug-
gest that it is affordable to first apply a (fast) symmetry reduction, followed by
a bisimulation quotienting on the obtained reduced system. Unfortunately, the
available tools did not allow us to test this idea.

4.3 Rewards

This section reports on the results for bisimulation minimisation for Markov
reward models. Note that the initial partitions need to be adapted such that
only states with equal reward are grouped. We have equipped two DTMCs and
one CTMC with a reward assignment function r:

– Crowds protocol (DMRM): the reward indicates the number of messages
sent;

– Randomised mutual exclusion protocol (DMRM): the reward indicates the
number of attempts that have been undertaken to acquire access to the
critical section;

– Workstation cluster (CMRM): the reward is used to measure the repair time.

Recall that for DMRMs, r(s) indicates the reward that is earned on leaving a
state, while for CMRMs, r(s)·t is the earned reward when staying t time-units
in s. The experiments are focused on verifying time- and reward-bounded until-
formulas. For DMRMs, these formulas are checked using a path graph generation
algorithm as proposed in [1] which has a time complexity in O(k·r·|S|3), where
k and r are the time-bound and reward-bound, respectively. For CMRMs, we
employed the discretization approach by Tijms and Veldman as proposed in [21]
which runs in time O(t·r·|S|3·d−2) where d is the step size of the discretisation.
In our experiments, the default setting is d = 1

32 .
For the Crowds protocol (for R = 3), we checked the probability that the

sender’s id is discovered within 100 steps and maximally two messages, i. e.,

P≤p(3
≤100
≤2 observe). In case of the randomised mutual exclusion protocol, we

checked P≤q(
∧N

j 6=1 ¬enterj U≤50
≤10 enter1), i. e., maximally 10 attempts are allowed

to enter the critical section. Finally, for the workstation cluster, we checked the
change of providing minimum QoS to premium QoS within maximally 5 time
units of repair (and 10 time units). All results are listed in the following table.

Due to the prohibitive (practical) time-complexity, manageable state space
sizes are (much) smaller than for the case without rewards. Another consequence
of these large verification times, bisimulation minimisation is relatively cheap,
and results in possibly drastic time savings, as for the Crowds protocol.

Crowds protocol with rewards

original DTMC lumped DTMC red. factor

N states transitions ver. time blocks lump + ver. time states time
5 1198 2038 2928 93 44.6 12.88 65.67

10 6563 15143 80394 103 73.5 63.72 1094.49
15 19228 55948 1004981 103 98.7 186.68 10182.13
20 42318 148578 5174951 103 161 410.85 32002.61

Randomised mutual exclusion protocol with rewards

2 188 455 735 151 616 1.25 1.19
3 2368 8272 60389 1123 19010 2.11 3.18
4 27600 123883 5446685 5224 298038 5.28 18.28
5 308800 1680086 > 107 18501 3664530 16.69 –

Workstation cluster with rewards

2 276 1120 278708 147 55448 1.88 5.03
3 512 2192 849864 268 151211 1.91 5.62
4 820 3616 2110095 425 347324 1.93 6.08
5 1200 5392 > 107 618 2086575 1.94 –
6 1652 7520 > 107 847 3657682 1.95 –

5 Concluding remarks

Our experiments confirm that significant (up to logarithmic) state space reduc-
tions can be obtained using bisimulation minimisation. The appealing feature of
this abstraction technique is that it is fully automated. For several case studies,
also substantial reductions in time have been obtained (up to a factor 25). This
contrasts results for traditional model checking where bisimulation minimisation
typically outweighs verifying the original system. Time reduction strongly de-
pends on the number of transitions in the Markov chain, its structure, as well as
on the convergence rate of numerical computations. The P2P protocol experi-
ment shows encouraging results compared with symmetry reduction [33] (where
symmetries are detected manually). For measure-driven bisimulation for models
without rewards, this speedup comes with no memory penalty: the peak memory
use is typically unchanged; for ordinary bisimulation some experiments showed
an increase of peak memory up to 50%. In our case studies with rewards, we
experienced a 20–40% reduction in peak memory use.

We plan to further investigate combinations of symmetry reduction with
bisimulation minimisation, and to extend our experimental work towards MDPs
and simulation preorders.

Acknowledgement. This research has been performed as part of the MC=MC project

that is financed by the Netherlands Organization for Scientific Research (NWO), and

the project VOSS2 that is financed by NWO and the German Research Council (DFG).

References

1. Andova, S., Hermanns, H., Katoen, J.-P.: Discrete-time rewards model-checked. In
Larsen, K. G., et al. (eds.): FORMATS. LNCS, Vol. 2791. Springer, Berlin (2003)
88–104

2. Aziz, A., Sanwal, K., Singhal, V., Brayton, R.: Model-checking continuous time
Markov chains. ACM TOCL 1 (2000) 162–170

3. Aziz, A., Singhal, V., Balarin, F., Brayton, R. K., Sangiovanni-Vincentelli, A. L.:
It usually works: the temporal logic of stochastic systems. In Wolper, P. (ed.):
CAV. LNCS, Vol. 939. Springer, Berlin (1995) 155–165

4. Baier, C., Ciesinski, F., Größer, M.: ProbMela and verification of Markov decision
processes. Performance Evaluation Review 32 (2005) 22–27

5. Baier, C., Haverkort, B., Hermanns, H., Katoen, J.-P.: On the logical characteri-
sation of performability properties. In Montanari, U., et al. (eds.): ICALP. LNCS,
Vol. 1853. Springer, Berlin (2000) 780–792

6. Baier, C., Haverkort, B., Hermanns, H., Katoen, J.-P.: Model-checking algorithms
for continuous-time Markov chains. IEEE TSE 29 (2003) 524–541

7. Baier, C., Katoen, J.-P., Hermanns, H., Wolf, V.: Comparative branching-time
semantics for Markov chains. Information and Computation 200 (2005) 149–214

8. Ben Mamoun, M., Pekergin, N., Younès, S.: Model checking of continuous-time
Markov chains by closed-form bounding distributions. In: QEST. IEEE CS, Los
Alamitos (2006) 189–198

9. Böde, E., Herbstritt, M., Hermanns, H., Johr, S., Peikenkamp, T., Pulungan, R.,
Wimmer, R., Becker, B.: Compositional performability evaluation for Statemate.
In: QEST. IEEE CS, Los Alamitos (2006) 167–178

10. Buchholz, P.: Exact and ordinary lumpability in finite Markov chains. Journal of

Applied Probability 31 (1994) 59–75
11. D’Aprile, D., Donatelli, S., Sproston, J.: CSL model checking for the GreatSPN

tool. In Aykanat, C., et al. (eds.): Computer and Information Sciences, ISCIS.
LNCS, Vol. 3280. Springer, Berlin (2004) 543–553

12. D’Argenio, P. R., Jeannet, B., Jensen, H. E., Larsen, K. G.: Reachability analysis
of probabilistic systems by successive refinements. In de Alfaro, L., et al. (eds.):
PAPM–PROBMIV. LNCS, Vol. 2165. Springer, Berlin (2001) 39–56

13. Derisavi, S.: Solution of Large Markov Models using Lumping Techniques and

Symbolic Data Structures. PhD thesis, Univ. of Illinois at Urbana-Champaign
(2005)

14. Derisavi, S., Hermanns, H., Sanders, W. H.: Optimal state-space lumping in
Markov chains. IPL 87 (2003) 309–315

15. Fecher, H., Leucker, M., Wolf, V.: Don’t know in probabilistic systems. In Valmari,
A. (ed.): Model Checking Software. LNCS, Vol. 3925. Springer, Berlin (2006) 71–88

16. Fisler, K., Vardi, M. Y.: Bisimulation minimization in an automata-theoretic ver-
ification framework. In Gopalakrishnan, G., et al. (eds.): FMCAD. LNCS, Vol.
1522. Springer, Berlin (1998) 115–132

17. Fisler, K., Vardi, M. Y.: Bisimulation and model checking. In Pierre, L., et al.
(eds.): CHARME. LNCS, Vol. 1703. Springer, Berlin (1999) 338–342

18. Fisler, K., Vardi, M. Y.: Bisimulation minimization and symbolic model checking.
Formal Methods in System Design 21 (2002) 39–78

19. Groesser, M., Baier, C.: Partial order reduction for Markov decision processes: a
survey. In de Boer, F. S., et al. (eds.): FMCO. LNCS, Vol. 4111. Springer, Berlin
(2006) 408–427

20. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal

Aspects of Computing 6 (1994) 512–535
21. Haverkort, B., Cloth, L., Hermanns, H., Katoen, J.-P., Baier, C.: Model checking

performability properties. In: DSN. IEEE CS, Los Alamitos (2002) 103–112
22. Haverkort, B. R., Hermanns, H., Katoen, J.-P.: On the use of model checking

techniques for quantitative dependability evaluation. In: 19th IEEE Symposium

on Reliable Distributed Systems. IEEE CS, Los Alamitos (2000) 228–237
23. Hermanns, H., Kwiatkowska, M., Norman, G., Parker, D., Siegle, M.: On the use

of MTBDDs for performability analysis and verification of stochastic systems. J.

of Logic and Alg. Progr. 56 (2003) 23–67
24. Hillston, J.: A Compositional Approach to Performance Modelling. Cambridge

University Press (1996)
25. Huth, M.: An abstraction framework for mixed non-deterministic and probabilistic

systems. In Baier, C., et al. (eds.): Validation of Stochastic Systems. LNCS, Vol.
2925. Springer, Berlin (2004) 419–444

26. Huth, M.: On finite-state approximants for probabilistic computation tree logic.
TCS 346 (2005) 113–134

27. Ibe, O. C., Trivedi, K. S.: Stochastic Petri net models of polling systems. IEEE J.

on Selected Areas in Communications 8 (1990) 1649–1657
28. Itai, A., Rodeh, M.: Symmetry breaking in distributed networks. Information and

Computation 88 (1990) 60–87
29. Katoen, J.-P., Khattri, M., Zapreev, I. S.: A Markov reward model checker. In:

QEST. IEEE CS, Los Alamitos (2005) 243–244
30. Katoen, J.-P., Zapreev, I. S.: Safe on-the-fly steady-state detection for time-

bounded reachability. In: QEST. IEEE CS, Los Alamitos (2006) 301–310
31. Kwiatkowska, M., Norman, G., Parker, D.: Probabilistic symbolic model checking

with PRISM: a hybrid approach. Int. J. on STTT 6 (2004) 128–142
32. Kwiatkowska, M., Norman, G., Parker, D.: Game-based abstraction for Markov

decision processes. In: QEST. IEEE CS, Los Alamitos (2006) 157–166
33. Kwiatkowska, M., Norman, G., Parker, D.: Symmetry reduction for probabilistic

model checking. In Ball, T., et al. (eds.): CAV. LNCS, Vol. 4144. Springer, Berlin
(2006) 234–248

34. Larsen, K. G., Skou, A.: Bisimulation through probabilistic testing. Information

and Computation 94 (1991) 1–28
35. Massink, M., Katoen, J.-P., Latella, D.: Model checking dependability attributes

of wireless group communication. In: DSN. IEEE CS, Los Alamitos (2004) 711–720
36. Monniaux, D.: Abstract interpretation of programs as Markov decision processes.

Science of Computer Programming 58 (2005) 179–205
37. Pnueli, A., Zuck, L.: Verification of multiprocess probabilistic protocols. Distributed

Computing 1 (1986) 53–72
38. Reiter, M. K., Rubin, A. D.: Crowds: anonymity for web transactions. ACM

Transactions on Information and System Security 1 (1998) 66–92
39. Sproston, J., Donatelli, S.: Backward bisimulation in Markov chain model checking.

IEEE TSE 32 (2006) 531–546

