
Simulation-Based CTMC Model Checking: An Empirical Evaluation

Joost-Pieter Katoena and Ivan S. Zapreevb

aRWTH Aachen University, D-52056 Aachen, Germany
bCWI, 1098 XG Amsterdam, The Netherlands

Abstract

This paper provides an experimental study of the effi-
ciency of simulation-based model-checking algorithms for
continuous-time Markov chains by comparing: MRMC –
the only tool that implements (new) confidence-interval-
based algorithms for verification of all main CSL formu-
lae; Ymer – that allows for verification of time-bounded
and time-interval until using sequential acceptance sam-
pling; and VESTA – that can verify time-bounded and
unbounded until by means of simple hypothesis testing.
The study shows that MRMC provides the most accurate
verification results. Ymer and VESTA, unlike MRMC, have
almost constant memory consumption. Ymer requires the
least number of observations to assess the model-checking
problem, but MRMC is mostly the fastest. This implies that
the tools’ efficiency does not, so much, depend on sampling
but is rather determined by supplementary computations.

I. Introduction

The applicability of probabilistic model checking ranges
from areas such as randomised distributed algorithms to
planning and AI, security [21], and even biological pro-
cess modelling [18]. Probabilistic model-checking engines
have been integrated in existing tool chains for widely
used formalisms such as stochastic Petri nets [6], State-
mate [4], the stochastic process algebra PEPA [11], and
a probabilistic variant of Promela [2]. Popular logics are
Probabilistic CTL (PCTL) [7] and Continuous Stochastic
Logic (CSL) [3]. At present, there are several model
checkers, such as PRISM [22], MRMC [19], VESTA [23],
Ymer [27], and APMC [17], that support verification of

This research was performed as part of the MC=MC project financed by
the Netherlands Organization for Scientific Research (NWO). We thank
Håkan L. S. Younes (Google) for valuable discussions and advising about
experimental setup.

finite-state continuous-time Markov chains. The typical
kind of properties that they can verify are time-bounded
until properties–“Does the probability to reach a certain
set of goal states (by avoiding bad states) within a max-
imal time span exceed0.5?”, unbounded until which is
similar to the previous one, but with no time bound, and
steady-state–“In equilibrium, does the likelihood to leak
confidential information remain below10−4?”

Probabilistic model checking can be done employing
numerical or statistical approaches. The former one, is car-
ried out by symbolic and numerical methods. It typically
guarantees a high degree of accuracy, but often requires
a lot of intricate computations. The latter approach, is
based on sampling and Monte Carlo simulation and al-
lows for a much simpler algorithms. Being statistical in
nature, simulations can not guarantee that the verification
result is100% correct, but the approach allows to bound
the probability of generating an incorrect answer to the
verification problem.

Like in the traditional setting, probabilistic model
checking suffers from the state-space explosion: the num-
ber of states grows exponentially in the number of sys-
tem components and cardinality of data domains. This
brings a great deal of inefficiency when using numerical
model-checking algorithms. Fortunately, the simulation-
based approach often overcomes this problem due to
simpler algorithms and “on-the-fly” state-space generation.

In this paper we provide a comparative experimental
study of the simulation-based model-checking techniques
for CSL. This study (empirically) evaluates the three dis-
tinct approaches: one, implemented in MRMC, and based
on confidence intervals (c. i.), see the PhD thesis of Ivan
S. Zapreev [31]; another, realised in Ymer, and based on
sequential acceptance sampling [30]; and the third one,
supported by VESTA, and based on simple hypothesis
testing [24].

Let us note that both PRISM and APMC allow for
statistical model checking of DTMCs and CTMCs, based
on the theoretical results of [8]. The algorithms allow for

2
model-checking until formulae, by considering thefinite
path prefixes and computing the probability estimates by
means of the Chernoff-Hoeffding bounds. The reasons why
we did not consider PRISM and APMC in our experiments
are as follows: (i) when using its simulation engine,
PRISM allows to compute the probability estimates, but
does not support probability bounds in the formulae;(ii)
algorithms implemented in MRMC, except for not using
Chernoff-Hoeffding bounds, seem to be a generalisation
that of [8] in case of knowing structural properties of the
Markov chain.

Our experiments are aimed at the following main points:
(i) the verification time – the required time to verify a
formula;(ii) the confidence levels – the match between the
theoretically guaranteed confidence and the one obtained in
practice;(iii) the peak memory usage (VSZ) – the maximal
amount of virtual memory (RAM + swap) needed by the
tools during the verification;(iv) the required number of
observations – an indicator of the simulation effort.

For our experiments, we have chosen two case stud-
ies (CTMCs): Cyclic Server Polling System (CPS) and
Tandem Queueing Network (TQN), also used in [14] for
performance evaluation of probabilistic model checkers.

The rest of the paper is organised as follows: Section II
contains a detailed description of the considered case
studies and Section III provides further details about the
employed model checkers and outlines their differences.
Further, in Section IV we discuss and match the tool’s
parameters, justifying their values selected in Section V.
The latter goes over the experimental setup. Section VI dis-
cusses the experimental results and Section VII concludes.

II. Case Studies

Cyclic Server Polling System (CPS). A cyclic polling
system [13] consists ofN stations and a server. Each
station has a buffer with capacity1 and the stations are
attended by a single server in cyclic order. The server starts
by polling the first station. If this station has a message in
its buffer, the server serves it. Once the station has been
served, or if its buffer was empty, the server moves to the
next station cyclically. The polling and service times are
exponentially distributed with ratesγ = 200 and µ = 1,
respectively. The arrival rate of messages at each station is
exponentially distributed with rateλ = µ

N
. Applications of

this case study can be found in e. g. [27], [9], [23], [28].
Tandem Queueing Network (TQN). The Tandem Queue-
ing Network [10] (see also [9], [28], [23]) consists of
two queues of capacityN in sequence. Messages arrive
at the first queue; when they get served, they are routed
to the second queue, from where they leave the system.
The message arrivals are exponentially distributed with rate
λ = 4·N . The server handles messages from the first queue

according to a two-phase Coxian [5] distribution. The time
between departures from the second queue is exponentially
distributed with rateκ = 4.

III. Tools

MRMC [15], [14] (version 1.4.1, April 2009) is a
command-line tool, written in C. The tool implements nu-
merical model-checking techniques for DTMC and CTMC
models, and reward extensions thereof. Sincev1.4.1, it
has a full support for the statistical model checking of
CSL properties on CTMC models. For time-interval until
formulae the tool employs simple terminating simulation.
For unbounded-until formulae, the Markov chain model is
divided into transient and absorbing states and then the
long-run reachability probability is bounded by transient
probabilities. For the steady-state formulae the probability
is estimated based on steady-state simulation of bottom
strongly connected components (BSCCS) and estimates
for the probabilities to reach those BSCCs. The tool’s
distinguishing features are that:(i) to verify a formula
it estimates its probability using ac. i. of desired width
and then compares it against the formula’s probability
bound; (ii) MRMC does not employ standard sequential
c. i. but rather emulates it by gradually increasing the
sample size;(iii) the tool requires two independent samples
when model-checking unbounded-until formulae.
Ymer [27] (version3.0, February2005) is a command-
line tool, written in C and C++, for verifying transient
properties of CTMCs and generalisations. Ymer imple-
ments statistical CSL model checking techniques based on
discrete event simulation [26] and sequential acceptance
sampling [29]. It also incorporates simple acceptance sam-
pling and a numerical engine adopted from PRISM [16].
For time-interval formulae Ymer uses terminating simu-
lations but instead ofc. i. employs sequential acceptance
sampling. The latter minimises the number of required
observations by rejecting/accepting the verified propertyat
early stages, when the simulations show that the formula is
clearly satisfied/violated. The procedure has the advantage
of requiring fewer observations, on average, than fixed
sample size tests, e. g.c. i., for similar levels of accuracy.
VESTA [23] (version2.0, 2005) is a Java-based tool for
statistical analysis of probabilistic systems. In particular,
VESTA allows to verify CSL (PCTL) properties on CTMC
(DTMC) models. The tool implements model-checking
techniques, based on simple hypothesis testing [12], dis-
cussed in [29] and [24]. For until formulae the tool uses
terminating simulations. For unbounded until, aterminal
state⊥ is added to the model. Every state of the original
model is then extended with a transition to this state
(taken with some fixed probabilityp⊥), and the existing
transition probabilities are renormalized to form proper

3
probability distributions. Such modification allows to avoid
infinite simulation paths, but at the same time requires
an extra conditions for guarantying confidence levels,
see Section IV. Note that, simple hypothesis testing – a
simplified version of a sequential acceptance sampling that
uses fixed sample sizes.
Tool differences: Before we proceed let us overview
the differences between the considered tools, and the
techniques they implement, and try to estimate their pos-
sible influence on the experimental results.(i) VESTA is
implemented in Java and thus, can be slower than the
other tools. Also, its VSZ values should mostly reflect
the total memory allocated by JVM.(ii) VESTA uses
simple hypothesis testing whereas Ymer uses sequential.
Therefore, we expect VESTA to be slower than Ymer,
since to achieve the same level of confidence, sequential
hypothesis testing requires fewer observations than simple
hypothesis testing [1].(iii) Ymer and VESTA, unlike
MRMC: (iii.a) have on-the-fly model generation:MRMC
accepts pre-generated CTMCs, and thus the tool’s VSZ
values should depend on the model size;(iii.b) can only
verify properties in the initial state of the model:Thus,
our results correspond to model checking formulae in the
initial state;(iii.c) do not provide the probability estimates:
Ymer has a special option that allows to request such
estimates (Ymer P). In this case, results are computed
using sequential confidence-interval based approach [20].

IV. Tool Parameters

For a fair experimental comparison of model-checking
algorithms it is vital to have their input parameters match-
ing each other in the best possible way. Further, we
consider the main simulation parameters of MRMC, Ymer,
and VESTA. We will assume that̃p := Prob(s0, Φ U Ψ),
Prob

(
s0, Φ U [t1,t2] Ψ

)
, or Prob∞ (s, Ψ), and b is the

probability bound of the formulae, e. g. when we want to
verify P≥b (Φ U Ψ). Note that, since we consider formu-
lae without nested probabilistic operators, the correctness
conditions of the algorithms of Ymer and VESTA are
the relaxed versions thereof given in [25]. An extended
discussion about the tool’s simulation parameters can be
found in Section7.1 of [31].
MRMC has two parameters:ξ – the desired confidence
of the result;δ′ – the upper bound on the width of the
consideredc. i. Confidence-level guarantees: if δ′ is such
thatδ′ ≤ |b− p̃|, then the probability of getting the correct
answer to the model-checking problem is guaranteed to be
at leastξ.
Ymer has three parameters:α – the desired probability of
the false-positive answer;β – the desired probability of the
false-negative answer;δ – the half width of the indifference
region.Confidence-level guarantees: if δ is such that̃p 6∈

(b − δ, b + δ), then the probability of getting the correct
answer to the model-checking problem is guaranteed to be
1−α. Here we assume thatα = β since we do not want do
distinguish between false-positive and false-negative error
probabilities.
VESTA inherits the parameters and the error-level guar-
antees of Ymer. In addition it has two parameters and one
condition specific for unbounded-until formulae:p⊥ > 0
– the stopping probability;δ1 – the width of the indif-
ference region for the problemP=0 (A U G). Confidence-
level guarantees: if p⊥ and δ1 are such that:ep 6∈„

0,
δ1

p
(|S|−1)
m ·(1−p⊥)(|S|−1)

–
, wherepm is the smallest non-

zero transition probability in the model, then the probabil-
ity of getting the correct answer for the unbounded-until
formulae is guaranteed to be1−α (here we takeα = β).

A. Relating parameters

To match parameters of Ymer, VESTA and MRMC,
we take1 − ξ = α = β, because we want to have the
equal bounds on probabilities of having incorrect answers.
In addition, we takeδ′ = δ since then fulfillingδ′ ≤ |b− p̃|
is equivalent to choosingδ such that̃p 6∈ (b − δ, b + δ).

The extra condition of VESTA, required for the
unbounded-until operator, does not have analogs in MRMC
and Ymer. Therefore, in our experiments we use the default
tool values forp⊥ and δ1. Note that, trying to satisfy
this condition can cause serious problems when model
checking large models due to the exponentials in the
divider of the interval’s right border. Moreover, according
to [24], the decrease ofp⊥ dramatically increases the
model-checking times. The same increase of verification
time is likely to happen whenδ1 is decreased.

V. Experimental setup

Every experiment, unless stated otherwise, was repeated
100 times. Average verification times (milliseconds) and
number of used observations, have logarithmic scale and
are based on tool’s statistics1. Peak memory usage of
the tools was collected by sampling process-memory con-
sumption (approximately) every100 msec. The (actual)
confidence levels are computed as the average number of
successful model-checking runs on each experiment. The
experiments were performed on a cluster-computer node
with two 2.33 GHz Intel Dual-Core Xeon processors (64-
bit) and 16 GB of RAM (time bounded- and unbounded-
until formulae) and an IntelR© Core

TM
2 Quad 2.40 GHz

processor (64-bit), 8 GB of RAM (steady-state formulae).
The operating system was Linux, because it is supported

1A minor output modification was introduced into Ymer, see [32].

4
by all the tools. Considering the discussion in Section IV,
the main tool parameters were set as follows:1−ξ = α =
β = 0.05, δ′ = δ = 0.01, p⊥ = 0.01 andδ1 = 0.1.

These tool settings are expected to guarantee the95%
accuracy of the verification results. The accuracy can be
lower if the conditions specified in Section IV are violated.
Also, when verifying the unbounded-until formulae with
VESTA, we use the default tool’s settings. For the steady-
sate formulae we have chosen the minimal sample size
and the sample-size step to be1, 000. The latter was done
because for smaller model sizes we had prematurec. i.
convergence, that was resulting in low confidence.

VI. Experimental Results

Note that, Ymer does not support unbounded-until and
VESTA cannot verify interval-until properties. Thus, our
experimental results do not always include all the tools.
MRMC is the only tool that supports verification of the
steady-state operator, which can be verified in a pure
simulation (P) or hybrid (H) mode. In the latter case
the probabilities of reaching bottom strongly connected
components are computed by means of numerical compu-
tations. Also, the regeneration method, used in steady-state
simulations, can be run in the original setting (O), when
the regeneration point is chosen arbitrarily, or using the
heuristic (H), when it is chosen to be the most recurring
state in a test run preceding the verification. Moreover, the
sample-size step for sequentialc. i. computations can be
chosen to be fixed (C) or dynamic (A). In the latter case, the
tool exponentially increases the sample-size step during the
simulations. Therefore, for each steady-state formula, we
have MRMC curves with names formed asMRMCTMS

whereT ∈ {P, H}, M ∈ {O, H}, andS ∈ {C, A}.
For both case studies, each tool and each model size

(CPS: N ≥ 15, TQN N ≥ 511), the VSZ did not
show any significant correlation (not more than a2%
difference) with the verified until formulae. This means,
that in case of MRMC, the tool’s memory consumption
was mostly caused by storing large state spaces in RAM.
Also, the memory consumption of Ymer and VESTA were
practically constant. Due to these facts, we do not provide
the VSZ plots of the until formulae, except for the first
one verified on the CPS case study.

A. Cyclic Server Polling System (CPS)

For this case study we verified a bounded-until,
an interval-until, two unbounded-until, and a steady-
state formulae on the models with number of sta-
tions N ranging from 3 to 18 and the corresponding
state-space sizes ranging from36 to 7, 077, 888. With

the increase ofN , the numerically-computed probabil-
ities for the considered properties change as follows:
for Prob

(
true U [0,80] busy1

)
: from 1.0000 to 0.9882;

for Prob
(
true U [40,80] serve1

)
: from 0.9999 to 0.8944;

for Prob(poll1 U serve1): from 0.0016 to 0.0002; for
Prob(¬serve2 U serve1): from 0.5213 to 0.5386; for
S (busy1): from 0.3481 to 0.1717.

P≥0.95

(
true U [0,80] busy1

)
– the probability that sta-

tion 1 becomes busy within80 time units is at least
0.95. With increase ofN , all the tools show increase
of the model-checking times (cf. Fig. 1) and the num-
ber of observations (cf. Fig. 2). This is because:(a)
Prob

(
true U [0,80] busy1

)
decreases and approaches the

probability constraint (0.95); (b) the model state space
grows, requiring for more and longer simulation paths.
For the largest model size (N = 18), MRMC uses
(respectively)1.2, 3.6 and 10.2 times more observations
than VESTA, Ymer P and Ymer. Yet, MRMC is1.5, 3.2,
and 4.4 times faster than (respectively) Ymer, VESTA,
and Ymer P. For Ymer it means that either the tool does
not have a sufficiently efficient implementation or that
sampling does not have a significant impact on verification
times, when compared to the effort needed for, e. g.,
performing hypothesis testing. Still, the verification times
of MRMC are growing faster than that of the other tools.
According to Fig. 3, Ymer and VESTA use constant

 10

 100

 1000

 10000

 2 4 6 8 10 12 14 16 18

C
om

pu
ta

tio
n

tim
e,

 m
ill

is
ec

(s
)

N

MRMC
Ymer

Ymer P
VESTA

Fig. 1: CPS :P≥0.95

`

true U [0,80] busy1

´

(time)

 100000

 1e+06

 2 4 6 8 10 12 14 16 18

N
um

be
r

of
 s

ta
te

s

N

MRMC
Ymer

Ymer P
VESTA

Fig. 2: CPS :P≥0.95

`

true U [0,80] busy1

´

(# observations)

5

 1

 10

 100

 1000

 2 4 6 8 10 12 14 16 18

M
ax

im
um

 V
S

Z
, M

b

N

MRMC
Ymer

Ymer P
VESTA

Fig. 3: CPS:P≥0.95

`

true U [0,80] busy1

´

(VSZ)

memory and the VSZ of MRMC, as predicted, grows
with the model size. This implies that, since both Ymer
and VESTA do not generate the model’s state space,
the memory consumption for sampling is insignificant.
The large memory usage of VESTA is dominated by the
amount of memory acquired by the JVM.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2 4 6 8 10 12 14 16 18

C
on

fid
en

ce
, p

ro
ba

bi
lit

y

N

MRMC
Ymer

Ymer P

Fig. 4: CPS:P≥0.99

`

true U [40,80] serve1
´

(confidence)

P≥0.99

(
true U [40,80] serve1

)
– the probability that sta-

tion 1 is served within the time interval[40, 80] is at
least 0.99. The confidence levels forN ∈ {6, 9} (cf.

 1000

 10000

 100000

 2 4 6 8 10 12 14 16 18

C
om

pu
ta

tio
n

tim
e,

 m
ill

is
ec

(s
)

N

MRMC
Ymer

Ymer P

Fig. 5: CPS :P≥0.99

`

true U [40,80] serve1
´

(time)

Fig. 4) are compromised, especially in case of Ymer
and Ymer P. This happens because the corresponding
probabilities Prob

(
true U [40,80] serve1

)
are 0.9988 and

 10000

 100000

 1e+06

 1e+07

 1e+08

 2 4 6 8 10 12 14 16 18

N
um

be
r

of
 s

ta
te

s

N

MRMC
Ymer

Ymer P

Fig. 6: CPS :P≥0.99

`

true U [40,80] serve1
´

(# observations)

0.9888, i. e., they fall in the indifference region. Moreover,
the conditionδ′ ≤ |b− p̃|, required by MRMC for ensuring
the confidenceξ = 0.95, is also violated. MRMC provides
more accurate answers as its algorithm first simulates until
the c. i. is tighter thanδ′ and then continues simulation
until it reaches the definite answer to the model-checking
problem. This increases the accuracy because the width
of the resultingc. i. can be much smaller thanδ′. Also,
MRMC uses the Agresti-Coullc. i. that is known to have a
coverage probability that exceeds the specified confidence.

 1

 10

 100

 1000

 10000

 2 4 6 8 10 12 14 16 18

C
om

pu
ta

tio
n

tim
e,

 m
ill

is
ec

(s
)

N

MRMC
VESTA

Fig. 7: CPS:P≥0.2 (poll1 U serve1) (time)

 1000

 10000

 100000

 2 4 6 8 10 12 14 16 18

N
um

be
r

of
 s

ta
te

s

N

MRMC
VESTA

Fig. 8: CPS:P≥0.2 (poll1 U serve1) (# observations)

The model-checking times (cf. Fig. 5) and the number
of observations (cf. Fig. 6) indicate that the accuracy of

6

 1000

 10000

 2 4 6 8 10 12 14 16 18

C
om

pu
ta

tio
n

tim
e,

 m
ill

is
ec

(s
)

N

MRMC

Fig. 9: CPS:P≥0.5 (¬serve2 U serve1) (time)

 1e+07

 2 4 6 8 10 12 14 16 18

N
um

be
r

of
 s

ta
te

s

N

MRMC

Fig. 10: CPS:P≥0.5 (¬serve2 U serve1) (# observations)

MRMC comes at a price, as witnessed by the peaks for
N = 9. In general (N = 18), MRMC is up to 8 times
faster than Ymer P, but is up to21.7 times slower than
Ymer. The performance of the latter one is improving
with the growth ofN . The reason for that is likely to
be the rapid increase of distance between the values of
Prob

(
true U [40,80] serve1

)
and the probability bound of

the formula. In this case, Ymer P and MRMC continue
simulations until they reach thec. i. of the desired width
but Ymer, that uses sequential hypothesis testing, does not
need that, so it stops much earlier.

P≥0.2 (poll1 U serve1) – the probability that station1
is served after being polled is at least0.2. Both MRMC and
VESTA showed100% accuracy when model checking this
property. The performance results given in Fig. 7 indicate
that the time required by VESTA is almost constant for all
model sizes and for MRMC it is insignificantly small in
the beginning (up toN = 12) and then starts growing. This
contradictions to Fig. 8. One can notice that the number of
observations required by VESTA is growing whereas for
MRMC it is decreasing. Putting these facts together, we
conclude that the increase of verification time for MRMC
might be caused by:(i) the effort required for traversing
the large (up to about7 · 106 states) Markov chain stored
in RAM; (ii) the need to search for BSCCs. Still, MRMC
is at least10 times faster than VESTA.

P≥0.5 (¬serve2 U serve1) – the probability that station

1 is served before station2 is at least0.5. Fig. 9 provides
the model-checking times for MRMC which again showed
> 95% accuracy. The plots for VESTA are not present
because it did not terminate within the15 minutes time-
out (compared to seconds required by MRMC). Fig. 10
shows the number of required observations. Notice that,
there is a significant drop forN = 17 and also the values
for N = 15 and16 are almost equal. At the same time, the
model-checking times for these values ofN show a stable
and continuous increase. This strengthen our belief in that
supplementary computations, such as traversal through a
large pre-generated Markov chain, stored in RAM, give a
much stronger influence on the model-checking time than
the increase in the number of required observations.

S>0.19 (busy1) – the steady-state probability of station
1 being busy is greater than0.19. Fig. 11 provides the

 1000

 10000

 2 4 6 8 10 12 14 16 18

C
om

pu
ta

tio
n

tim
e,

 m
ill

i s
ec

(s
)

N

MRMCHHC
MRMCHHA
MRMCHOC
MRMCHOA
MRMCPHC
MRMCPHA
MRMCPOC
MRMCPOA

Fig. 11: CPS :S>0.19 (busy1) (time)

 1e+07

 2 4 6 8 10 12 14 16 18

N
um

be
r

of
 s

ta
te

s

N

MRMCHHC
MRMCHHA
MRMCHOC
MRMCHOA
MRMCPHC
MRMCPHA
MRMCPOC
MRMCPOA

Fig. 12: CPS :S>0.19 (busy1) (# observations)

model-checking times for MRMC which showed100%
accuracy. Notice that up toN = 12 there is a significant
difference between MRMC runs with the constant sample-
size step, the upper bunch of curves, and the dynamic
step, the lower bunch. Also, the latter ones are using
significantly more observations (cf. Fig. 12), from which
we conclude that re-computation ofc. i., on small models,
can significantly slow down model checking. Besides, for
N = 15, 16 the estimated probabilities fall into the indif-
ference interval. The corresponding picks are especially

7

 100

 1000

 10000

 2 4 6 8 10 12 14 16 18

M
ax

im
um

 V
S

Z
, M

b

N

MRMCHHC
MRMCHHA
MRMCHOC
MRMCHOA
MRMCPHC
MRMCPHA
MRMCPOC
MRMCPOA

Fig. 13: CPS:S>0.19 (busy1) (VSZ)

distinctive for theMRMC∗∗C curves of Fig. 12. Yet,
this does not have any drastic affect on the corresponding
model-checking times. This is because forN >= 12 the
effort needed for additional computations still exceeds the
effort required for simulating a large model. The mem-
ory consumption curves, cf. Fig. 13, all showing similar
behaviour. Yet, memory required to store samples, starts
playing an important role. Notice that, the VSZ values
of MRMC are significantly higher (up to3.1 times for
N = 18) than in Fig. 3.

B. Tandem Queueing Network (TQN)

Here we verified two bounded-until, one interval-until,
one unbounded-until, and one steady-state formulae on
the models with the queue capacitiesN ranging from
2 to 1023 and the corresponding state-space sizes are
ranging from15 to 2, 096, 128. With the increase ofN ,
the numerically-computed probabilities for the considered
properties change as follows: forProb

(
true U [0,2] full

)
:

from 0.0262 to 0.0000; for Prob
(
true U [0.5,2] full

)
: from

0.0225 to 0.0000; for Prob
(
true U [0,10] full1

)
: it is con-

stantly 1.0000; for Prob(¬full1 U full2): from 0.0177 to
0.0000; for S (full1): from 0.8032 to 0.9995. Since the
value of N is changed in a non-linear manner, the hori-
zontal axis of the plots given in this section islogarithmic.

P≤0.01

(
true U [0,2] full

)
– the probability that both

queues become full within2 time units is at most0.01.
There are no results for Ymer P because it was not
terminating within the15 minutes time-out. The confidence
estimates in Fig. 14 exhibit a slight decrease of confidence
for Ymer and VESTA atN = 2. This is due to the fact that
in this caseProb

(
true U [0,2] full

)
= 0.0262 is relatively

close to the probability bound. Still, the confidence levels
stay above the theoretically predicted one. As before,
MRMC is generally faster than the other tools (cf. Fig. 15)
but levels out with Ymer atN = 1023. Also, its model
checking times grow faster that that of the other tools.
The peaks in MRMC plots forN = 2 (see also Fig. 16) is
the price it pays for being100% accurate. Notice that, for

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1 10 100 1000

C
on

fid
en

ce
, p

ro
ba

bi
lit

y

N

MRMC
Ymer

VESTA

Fig. 14: TQN :P≤0.01

`

true U [0,2] full
´

(confidence)

N ≥ 10 the number of observations grows uniformly for
all tools. E. g., MRMC requires from3 to 3.2 times more
observations than Ymer, and VESTA needs about12%
more samples than MRMC. The verification times show
a different behaviour. VESTA has the slowest increase
of time, Ymer’s times grow a bit faster, and MRMC has
the fastest time increase. In the worst case (N = 1023),
Ymer is only 2.3 times faster than VESTA, and about
7% faster than MRMC. Considering the corresponding
increase in the number of observations, this might mean
that the Ymer’s implementation is either not very efficient
or that sampling does not have a sufficient effect on model
checking times, compared to supplementary computations.
MRMC most likely suffers from the need to store and
traverse the complete CTMC.

P≤0.1

(
true U [0.5,2] full

)
– the probability that both

queues become full within time interval[0.5, 2] is at
most 0.1. For this property all the tools showed100%
accuracy. Once again, Ymer P was not able to finish
verification within 15 minutes. The performance results
given in Fig. 17 and 16 show the behaviour similar to the
one forP≤0.01

(
true U [0,2] full

)
.

 1

 10

 100

 1000

 1 10 100 1000

C
om

pu
ta

tio
n

tim
e,

 m
ill

is
ec

(s
)

N

MRMC
Ymer

VESTA

Fig. 15: TQN:P≤0.01

`

true U [0,2] full
´

(time)

P≤0.98

(
true U [0,10] full1

)
– the probability that the

first queue becomes full within10 time units is at most
0.98. In this case Ymer P successfully verified the formula,
and all the tools were100% accurate. The performance

8

 1000

 10000

 100000

 1e+06

 1 10 100 1000

N
um

be
r

of
 s

ta
te

s

N

MRMC
Ymer

VESTA

Fig. 16: TQN:P≤0.01

`

true U [0,2] full
´

(# observations)

 1

 10

 100

 1000

 1 10 100 1000

C
om

pu
ta

tio
n

tim
e,

 m
ill

is
ec

(s
)

N

MRMC
Ymer

Fig. 17: TQN:P≤0.1

`

true U [0.5,2] full
´

(time)

displayed in Fig. 19 and Fig. 20, are similar to the ones
for the previous two properties.

P≤0.03 (¬full1 U full2) – the probability that the
second queue becomes full before the first queue is at
most 0.03. Both, VESTA and MRMC were completely
accurate in their model-checking results. The verification
times and the number of observations in Fig. 21 and 22
reflect that, sinceProb(¬full1 U full2) = 0.000 for all
N ≥ 10, VESTA needs an almost constant amount
of observations to decide on the property. This can be
because it uses hypothesis testing and that the distance

 1000

 10000

 100000

 1e+06

 1 10 100 1000

N
um

be
r

of
 s

ta
te

s

N

MRMC
Ymer

Fig. 18: TQN:P≤0.1

`

true U [0.5,2] full
´

(# observations)

 0.1

 1

 10

 100

 1000

 1 10 100 1000

C
om

pu
ta

tio
n

tim
e,

 m
ill

is
ec

(s
)

N

MRMC
Ymer

Ymer P
VESTA

Fig. 19: TQN:P≤0.98

`

true U [0,10] full1
´

(time)

 100

 1000

 10000

 100000

 1e+06

 1 10 100 1000

N
um

be
r

of
 s

ta
te

s

N

MRMC
Ymer

Ymer P
VESTA

Fig. 20: TQN:P≤0.98

`

true U [0,10] full1
´

(# observations)

 1

 10

 100

 1000

 10000

 1 10 100 1000

C
om

pu
ta

tio
n

tim
e,

 m
ill

is
ec

(s
)

N

MRMC
VESTA

Fig. 21: TQN:P≤0.03 (¬full1 U full2) (time)

 1000

 10000

 100000

 1e+06

 1e+07

 1 10 100 1000

N
um

be
r

of
 s

ta
te

s

N

MRMC
VESTA

Fig. 22: TQN:P≤0.03 (¬full1 U full2) (# observations)

9

 10

 100

 1000

 10000

 1 10 100 1000

C
om

pu
ta

tio
n

tim
e,

 m
ill

i s
ec

(s
)

N

MRMCHHC
MRMCHHA
MRMCPHC
MRMCPHA

Fig. 23: TQN:S>0.999 (full1) (time)

 100000

 1e+06

 1e+07

 1 10 100 1000

N
um

be
r

of
 s

ta
te

s

N

MRMCHHC
MRMCHHA
MRMCPHC
MRMCPHA

Fig. 24: TQN:S>0.999 (full1) (# observations)

between the probability bound0.03 and the true value of
Prob(¬full1 U full2) stays constant. Still, MRMC is at
least6 times faster than VESTA.

S>0.999 (full1) – the steady-state probability of the first
queue being full is greater than0.999 For this property
we set the width of the indifference region to be0.0003.
Although MRMC was100% accurate, we should note that
in case ofN = 511 the estimated probability falls in the
indifference region. Also, using pure regeneration method,
without the heuristic for choosing the regeneration point,
failed. MRMC was unable to finish simulations withing
15 minutes timeout. The reason for that is that the TQN’s
model is an ergodic Markov chain. The latter, especially
for larger models, causes most of the regeneration cycles
to be enormously long. Once again, cf. Fig. 23, we see
that for smaller model sizes (N < 50) having a dynamic
sample-size increase saves a lot of effort needed for re-
computation of thec. i. For N ≥ 50 the pure simulation
method requires more time. This is because, although for
an ergodic CTMC there is no need to compute reachability
probabilities, the pure and hybrid simulation methods have
two different implementations and the former has a higher
complexity. The required observation in Fig. 24 show that
MRMC with the dynamic sample-size increase needs more
observations forN < 50, and for N ≥ 50 all curves
exhibit comparable behaviour. At the moment, we do not

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 1 10 100 1000

M
ax

im
um

 V
S

Z
, M

b

N

MRMCHHC
MRMCHHA
MRMCPHC
MRMCPHA

Fig. 25: TQN:S>0.999 (full1) (VSZ)

have any good explanation for the decrease in the number
of needed observations and the almost constant values
for N ≥ 50. Note that, verifying the given steady-state
property in the worst case (N = 1023, MRMCPHA)
requires about4.2 times more memory (cf. Fig. 252) than
verifying, e. g.,P≤0.01

(
true U [0,2] full

)
for N = 1023.

VII. Conclusions

Our analysis showed that for until formulae the peak-
memory consumption (VSZ) of MRMC grows in accor-
dance with the growth of the model sizes. This is due
to using the pre-generated Markov chain, as opposed
to the on-demand state-space generation implemented in
Ymer and VESTA. The later tools show (almost) constant
memory consumption. For the steady-state operator the
situation is different. When model checked with MRMC,
for the same model size, VSZ values can be up to4.5
(TQN, N = 1023) times larger than the ones for the
until formula. This means that memory needed for storing
sampled data is almost negligible when verifying until, and
is significant when verifying steady-state formulae.

The actual confidence levels of all tools were within
theoretically predicted bounds. At the same time MRMC
showed high accuracy even in cases when the sufficient
conditions for providing these bounds were violated.

Ymer P and VESTA were not always able to provide
model checking times within the15 minutes time out. In
all other cases, the model-checking times for all the tools
were within seconds. The exception is Ymer P, cf. Fig. 5.
On the considered models, verification times of MRMC
were mostly several times (up to10) smaller than that of
Ymer and VESTA, but the performance of MRMC was
rapidly decreasing with growth of the model sizes. This
might be because, e. g., generating random paths through
a large Markov chain requires addressing far distant blocks
of RAM. Another observation is that, for steady-state simu-
lations on smaller models (N ≤ 12 for CPS, andN ≤ 511

2N = 10, 50: An inadequate statistics due to small verification times.

10
for TQN) computation of confidence intervals requires
much more effort than doing sampling. To conclude, we
must admit that Ymer showed an excellent performance on
larger models, where in one case it was21.7 times faster
than MRMC (cf. Fig. 5). Also, Ymer always needed fewer
observations to provide correct model-checking results
than other tools. This means that its algorithms are more
efficient from the simulation point of view. Considering
its performance on smaller models, we must conclude
that either its implementation is not very efficient or that
the sampling effort does not play a significant role when
compared to supplementary computations. Last, but not
least is VESTA which, considering that it is implemented
in Java, showed a reasonably good performance. The tool
typically required more observations, but, with the growth
of the model sizes, the increase in their numbers was not
as significant as in case of MRMC.

References

[1] A.Wald and J. Wolfowitz. Optimum character of the sequential
probability ratio test. Annals of Mathematical Statistics, 19:326–
339, 1948.

[2] C. Baier, F. Ciesinski, and M. Größer. ProbMela and verification
of Markov decision processes.ACM SIGMETRICS Performance
Evaluation Review, 32(4):22–27, 2005.

[3] C. Baier, B. Haverkort, H. Hermanns, and J.-P. Katoen. Model-
Checking Algorithms for Continuous-Time Markov Chains.IEEE
Transactions on Software Engineering, 29(6):524–541, 2003.

[4] E. Bode, M. Herbstritt, H. Hermanns, S. Johr, T. Peikenkamp, R. Pu-
lungan, R. Wimmer, and B. Becker. Compositional Performability
Evaluation for STATEMATE. InQuantitative Evaluation of Systems
(QEST), pages 167–178. IEEE Computer Society, 2006.

[5] D. R. Cox. A use of complex probabilities in the theory of stochastic
processes. InCambridge Philosophical Society, volume 51, pages
313–319, 1955.

[6] D. D’Aprile, S. Donatelli, and J. Sproston. CSL Model Checking
for the GreatSPN Tool. In C. Aykanat, T. Dayar, and I. Korpeoglu,
editors,Computer and Information Sciences, volume 3280 ofLNCS,
pages 543–553. Springer, 2004.

[7] H. Hannsson and B. Jonsson. A logic for reasoning about time and
reliability. Formal Aspects of Computing, 6(5):512–535, 1994.

[8] T. Hérault, R. Lassaigne, F. Magniette, and S. Peyronnet. Approx-
imate Probabilistic Model Checking. In B. Steffen and G. Levi,
editors,Verification, Model Checking, and Abstract Interpretation
(VMCAI’04), volume 2937 ofLecture Notes in Computer Science,
pages 73–84. Springer-Verlag, 2004.

[9] H. Hermanns, J.-P. Katoen, J. Meyer-Kayser, and M. Siegle. A
Markov Chain Model Checker. In S. Graf and M. Schwartzbach,
editors,Tools and Algorithms for the Construction and Analysis of
Systems (TACAS), volume 1785 ofLNCS, pages 347–362. Springer,
2000.

[10] H. Hermanns, J. Meyer-Kayser, and M. Siegle. Multi Terminal
Binary Decision Diagrams to Represent and Analyse Continuous
Time Markov Chains. In B. Plateau, W. J. Stewart, and M. Silva,
editors, Numerical Solutions of Markov Chains, pages 188–207.
Prensas Universitarias, 1999.

[11] J. Hillston. A Compositional Approach to Performance Modelling.
Distinguished Dissertations Series. Cambridge University Press,
New York, NY, USA, 1996.

[12] R. V. Hogg and A. T. Craig.Introduction to Mathematical Statistics.
MacMillan, New York, NY, USA, 4th edition, 1978.

[13] O. C. Ibe and K. S. Trivedi. Stochastic Petri Net Models of
Polling Systems.Selected Areas in Communications, 8(9):1649–
1657, 1990.

[14] D. N. Jansen, J.-P. Katoen, M. Oldenkamp, M. Stoelinga,and I. S.
Zapreev. How Fast and Fat Is Your Probabilistic Model Checker?
In Haifa Verification Conference (HVC), volume 4899 ofLNCS,
pages 65 – 79. Springer, 2008.

[15] J.-P. Katoen, M. Khattri, and I. S. Zapreev. A Markov Re-
ward Model Checker. InQuantitative Evaluation of Sys-
tems (QEST), pages 243–244. IEEE Computer Society, 2005.
www.mrmc-tool.org.

[16] M. Kwiatkowska, G. Norman, and D. Parker. PRISM: Probabilistic
Symbolic Model Checker. In T. Field, P. Harrison, J. Bradley, and
U. Harder, editors,Modelling Techniques and Tools for Computer
Performance Evaluation (TOOLS), volume 2324 ofLNCS, pages
200–204. Springer, 2002.

[17] R. Lassaigne and S. Peyronnet. Approximate Verification of Prob-
abilistic Systems. In H. Hermanns and R. Segala, editors,Process
Algebra and Probabilistic Methods, Performance Modeling and
Verification (PAPM/PROBMIV), pages 213–214. Springer, 2002.

[18] P. Lecca and C. Priami. Cell cycle control in eukaryotes: A BioSpi
model. Technical Report DIT-03-045, Informatica e Telecommuni-
cazioni: University of Trento, 2003.

[19] MRMC: Markov Reward Model Checker.
http://www.mrmc-tool.org/.

[20] A. Nadas. An extension of a theorem of Chow and Robbins onse-
quential confidence intervals for the mean.Annals of Mathematical
Statistics, 40(2):667–671, 1969.

[21] G. Norman and V. Shmatikov. Analysis of probabilistic contract
signing. Journal of Computer Security, 14(6):561–589, 2006.

[22] PRISM: Probabilistic Symbolic Model Cchecker.
http://www.prismmodelchecker.org.

[23] K. Sen, M. Viswanathan, and G. Agha. Statistical Model Checking
of Black-Box Probabilistic Systems. In R. Alur and D. A. Peled,
editors,Computer Aided Verification (CAV), volume 3114 ofLNCS,
pages 202–215. Springer, 2004.

[24] K. Sen, M. Viswanathan, and G. Agha. On Statistical Model
Checking of Stochastic Systems. In K. Etessami and S. K.
Rajamani, editors,Computer Aided Verification (CAV), volume 3576
of LNCS, pages 266–280. Springer, 2005.

[25] K. Sen, M. Viswanathan, and G. Agha. VESTA: A Statistical
Model-checker and Analyzer for Probabilistic Systems. InQuantita-
tive Evaluation of Systems (QEST), pages 251–252. IEEE Computer
Society, 2005.

[26] G. S. Shedler.Regenerative Stochastic Simulation. Academic Press,
London, UK, 1993.

[27] H. Younes. Ymer: A Statistical Model Checker. In K. Etessami
and S. K. Rajamani, editors,Computer Aided Verification (CAV),
volume 3576 ofLNCS, pages 429–433. Springer, 2005.

[28] H. Younes, M. Kwiatkowska, G. Norman, and D. Parker. Numerical
vs. Statistical Probabilistic Model Checking.Software Tools for
Technology Transfer (STTT), 8(3):216–228, 2006.

[29] H. Younes and R. Simmons. Probabilistic Verification ofDiscrete
Event Systems using Acceptance Sampling. In E. Brinksma and
K. G. Larsen, editors,Computer Aided Verification (CAV), volume
2404 ofLNCS, pages 223–235. Springer, 2002.

[30] H. Younes and R. Simmons. Statistical Probabilistic Model Check-
ing with a Focus on Time-Bounded Properties.Information and
Computation, 204(9):1368–1409, 2006.

[31] I. S. Zapreev. Model Checking Markov Chains: Techniques and
Tools. PhD thesis, University of Twente, Enschede, The Nether-
lands, 2008. http://doc.utwente.nl/58974/1/thesisZapreev.pdf.

[32] I. S. Zapreev and C. Jansen. MRMC: Test-suite manual.
http://www.mrmc-tool.org/trac/wiki/Specifications, 2008.

www.mrmc-tool.org
http://www.mrmc-tool.org/
http://www.prismmodelchecker.org
http://doc.utwente.nl/58974/1/thesis_Zapreev.pdf
http://www.mrmc-tool.org/trac/wiki/Specifications

	Introduction
	Case Studies
	Tools
	Tool Parameters
	Relating parameters

	Experimental setup
	Experimental Results
	Cyclic Server Polling System (CPS)
	Tandem Queueing Network (TQN)

	Conclusions
	References

