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Abstract finite-state continuous-time Markov chains. The typical
kind of properties that they can verify are time-bounded
This paper provides an experimental study of the effi- until properties—“Does the probability to reach a certain
ciency of simulation-based model-checking algorithms for set of goal states (by avoiding bad states) within a max-
continuous-time Markov chains by comparing: MRMC — imal time span excee@.5?”, unbounded until which is
the only tool that implements (new) confidence-interval- similar to the previous one, but with no time bound, and
based algorithms for verification of all main CSL formu- steady-state—“In equilibrium, does the likelihood to leak
lae; Ymer — that allows for verification of time-bounded confidential information remain below)—*?”
and time-interval until using sequential acceptance sam-  Probabilistic model checking can be done employing
pling; and VESTA - that can verify time-bounded and numerical or statistical approaches. The former one, is car
unbounded until by means of simple hypothesis testing.ried out by symbolic and numerical methods. It typically
The study shows that MRMC provides the most accurateguarantees a high degree of accuracy, but often requires
verification results. Ymer and VESTA, unlike MRMC, have a lot of intricate computations. The latter approach, is
almost constant memory consumption. Ymer requires thebased on sampling and Monte Carlo simulation and al-
least number of observations to assess the model-checkingpws for a much simpler algorithms. Being statistical in
problem, but MRMC is mostly the fastest. This implies that nature, simulations can not guarantee that the verification
the tools’ efficiency does not, so much, depend on samplingesult is100% correct, but the approach allows to bound
but is rather determined by supplementary computations.the probability of generating an incorrect answer to the
verification problem.
Like in the traditional setting, probabilistic model
checking suffers from the state-space explosion: the num-
|. Introduction ber of states grows exponentially in the number of sys-
tem components and cardinality of data domains. This

The applicability of probabilistic model checking ranges Prings a great deal of inefficiency when using numerical
from areas such as randomised distributed algorithms tomodel-checking algorithms. Fortunately, the simulation-
planning and Al, security[[21], and even biological pro- Pased approach often overcomes this problem due to
cess modelling[18]. Probabilistic model-checking engine Simpler algorithms and “on-the-fly” state-space generatio
have been integrated in existing tool chains for widely [N this paper we provide a comparative experimental
used formalisms such as stochastic Petri néts [6], State-Study of the simulation-based model-checking techniques
mate [4], the stochastic process algebra PEPA [11], andf_or CSL. This study (er_npwmally) eva_luates the three dis-
a probabilistic variant of Promel&l[2]. Popular logics are tinct approaches: one, implemented in MRMC, and based
Probabilistic CTL (PCTL)[[F] and Continuous Stochastic ©n confidence intervalsc(i), see the PhD thesis of Ivan
Logic (CSL) [3]. At present, there are several model S. Zaprgev [31]; another, real!sed in Ymer, and bgsed on
checkers, such as PRISK]22], MRMC[19], VESTA[23], Sequential acceptance samplingl[30]; and the third one,
Ymer [Z7], and APMC [[17], that support verification of fuaportlezdl]by VESTA, and based on simple hypothesis

esting [24].
the Netheriands Organization for Scientiic Research (WS ank . L€ US note that both PRISM and APMC allow for
Hakan L. S. Younes (Google) for valuable discussions awiseg) about statistical model CheCkmg of DTMCs and CTMCs, based
experimental setup. on the theoretical results dfi[8]. The algorithms allow for



model-checking until formulae, by considering tfirite according to a two-phase Coxidn [5] distribution. Theztime
path prefixes and computing the probability estimates by between departures from the second queue is exponentially
means of the Chernoff-Hoeffding bounds. The reasons whydistributed with rate< = 4.
we did not consider PRISM and APMC in our experiments
are as follows:(i) when using its simulation engine, |[||. Tools
PRISM allows to compute the probability estimates, but
does not support probability bounds in the formulég;
algorithms implemented in MRMC, except for not using
Chernoff-Hoeffding bounds, seem to be a generalisation
that of [€] in case of knowing structural properties of the
Markov chain.

Our experiments are aimed at the following main points:

MRMC [15], [14] (version 1.4.1, April 2009) is a
command-line tool, written in C. The tool implements nu-
merical model-checking techniques for DTMC and CTMC
models, and reward extensions thereof. Simdet.1, it
has a full support for the statistical model checking of
CSL properties on CTMC models. For time-interval until

(i) the Yg_nﬁcahon t_|me — the required time to verify a formulae the tool employs simple terminating simulation.
formula; (ii) the confidence levels — the match between the . ; :
For unbounded-until formulae, the Markov chain model is

theoretically guaranteed confidence and the one obtained in,. . . . .

A . divided into transient and absorbing states and then the
practicejiii) the peak memory usage (VSZ) — the maximal | habili bability is bounded b .
amount of virtual memory (RAM + swap) needed by the ong-run reachability probability Is bounded by transient

probabilities. For the steady-state formulae the prokgbil

tools during the verification(iv) the required number of is estimated based on steady-state simulation of bottom

observations — an indicator of the simulation effort. strongly connected components (BSCCS) and estimates
For our experiments, we have chosen two case stud-

: ) . . for the probabilities to reach those BSCCs. The tool's
I_I(_a;nég;Mg Sg' g.:r)]/C|':\:le?eQ$r ('?Slll\ll;]gai?tesme d(iclflp[?.)zl]afg? distinguishing features are thafi) to verify a formula
f ueu Ilg i Wf b b'IZ i ud | check it estimates its probability using a.i. of desired width
pe;ﬁ;ﬂzgfgfi\;‘aeuzloen”osgrroar?is'e'j :srpocl)losvs(? Seecdﬁek;i'” and then compares it against the formula’s probability
) > Pap rg - bound; (i) MRMC does not employ standard sequential
contains a detailed description of the considered case . . . i
studies and Sectioilll provides further details about the c.i. but rather emulates it by gradually increasing the
u II d d II h kp Vi d utl' th . diff u sample sizeiii) the tool requires two independent samples
Em;t)hoye_ mSo ?. CEDeC ers ;n ou meds etlrh 'ther?ncﬁs'when model-checking unbounded-until formulae.
urther, In section we discuss and matc € 100'S v mer [27] (version3.0, February2005) is a command-
parameters, justifying their va_llues selected in Sedidn V line tool, written in C and C++, for verifying transient
The latter goes over the experimental setup. SeEfibn VI dis- ‘0 ertiés of CTMCs and enéralisations Ymer imole-
cusses the experimental results and Segfich VI concludesP P L g . . P
ments statistical CSL model checking techniques based on

discrete event simulatiori_ [26] and sequential acceptance

Il. Case Studies sampling [29]. It also incorporates simple acceptance sam-
pling and a numerical engine adopted from PRISMI [16].
Cyclic Server Polling System (CPS). A cyclic polling For time-interval formulae Ymer uses terminating simu-

system [[1B] consists ofV stations and a server. Each lations but instead o€.i. employs sequential acceptance
station has a buffer with capacity and the stations are sampling. The latter minimises the number of required
attended by a single server in cyclic order. The serversstart observations by rejecting/accepting the verified propatty
by polling the first station. If this station has a message in early stages, when the simulations show that the formula is
its buffer, the server serves it. Once the station has beerclearly satisfied/violated. The procedure has the adventag
served, or if its buffer was empty, the server moves to the of requiring fewer observations, on average, than fixed
next station cyclically. The polling and service times are sample size tests, e.g.i., for similar levels of accuracy.
exponentially distributed with rateg = 200 and . = 1, VESTA [23] (version2.0, 2005) is a Java-based tool for
respectively. The arrival rate of messages at each station i statistical analysis of probabilistic systems. In paittcu
exponentially distributed with rat® = £-. Applications of VESTA allows to verify CSL (PCTL) properties on CTMC
this case study can be found in e.lg.1[27], [9].1[28].1[28]. (DTMC) models. The tool implements model-checking
Tandem Queueing Network (TQN). The Tandem Queue- techniques, based on simple hypothesis tesfing [12], dis-
ing Network [10] (see also[]9],[128],L123]) consists of cussed in[[29] and[24]. For until formulae the tool uses
two queues of capacityv in sequence. Messages arrive terminating simulations. For unbounded untilteaminal

at the first queue; when they get served, they are routedstate | is added to the model. Every state of the original
to the second queue, from where they leave the systemmodel is then extended with a transition to this state
The message arrivals are exponentially distributed with ra (taken with some fixed probability, ), and the existing

A = 4-N. The server handles messages from the first queudransition probabilities are renormalized to form proper



probability distributions. Such modification allowsto&@o (b — 6, b+ §), then the probability of getting the cor?ect
infinite simulation paths, but at the same time requires answer to the model-checking problem is guaranteed to be
an extra conditions for guarantying confidence levels, 1—«. Here we assume that= ( since we do not want do
see SectiofIV. Note that, simple hypothesis testing — adistinguish between false-positive and false-negativerer
simplified version of a sequential acceptance sampling thatprobabilities.
uses fixed sample sizes. VESTA inherits the parameters and the error-level guar-
Tool differences. Before we proceed let us overview antees of Ymer. In addition it has two parameters and one
the differences between the considered tools, and thecondition specific for unbounded-until formulae; > 0
techniques they implement, and try to estimate their pos-— the stopping probabilityy; — the width of the indif-
sible influence on the experimental resuli$.VESTA is ference region for the problef—, (A U G). Confidence-
implemented in Java and thus, can be slower than thelevel guaranteesif p, and ¢; are such thatp ¢
other tools. Also, its VSZ values shguld mostly reflect 0, —rerr2 |, wherep,, is the smallest non-
the total memory allocated by JVMii) VESTA uses P o(—p )USITD | T .
simple hypothesis testing whereas Ymer uses sequential.zero tran§|t|on probability in the model, then the probablll
Therefore, we expect VESTA to be slower than Ymer, ity of getting the correct answer for the unbounded-until
since to achieve the same level of confidence, sequentia(ormUIae is guaranteed to e o (here we takex = ).
hypothesis testing requires fewer observations than simpl )
hypothesis testing[T1](ii) Ymer and VESTA, unlike A. Relating parameters
MRMC: (iii.a) have on-the-fly model generatioMRMC
accepts pre-generated CTMCs, and thus the tool's VSZ To match parameters of Ymer, VESTA and MRMC,
values should depend on the model si@iéb) can only  we takel — ¢ = o = 3, because we want to have the
verify properties in the initial state of the modéThus, equal bounds on probabilities of having incorrect answers.
our results correspond to model checking formulae in the In addition, we take’ = ¢ since then fulfillingd’ < |b—p|
initial state;(iii.c) do not provide the probability estimates: is equivalent to choosing such thatp & (b — 6, b+ ).
Ymer has a special option that allows to request such The extra condition of VESTA, required for the
estimates (Ymer P). In this case, results are computedunbounded-until operator, does not have analogs in MRMC
using sequential confidence-interval based apprdadh [20].and Ymer. Therefore, in our experiments we use the default
tool values forp, and d;. Note that, trying to satisfy
V. Tool Parameters this condition can cause serious problems when model
checking large models due to the exponentials in the
divider of the interval's right border. Moreover, accorgin
to [24], the decrease of, dramatically increases the
model-checking times. The same increase of verification
time is likely to happen when; is decreased.

For a fair experimental comparison of model-checking
algorithms it is vital to have their input parameters match-
ing each other in the best possible way. Further, we
consider the main simulation parameters of MRMC, Ymer,
and VESTA. We will assume that:= Prob(sg, ® U ¥), _
Prob(so, ® Ult21 W), or Prob® (s, ¥), and b is the V. Experimental setup
probability bound of the formulae, e.g. when we want to
verify P>, (® U V). Note that, since we consider formu-  Every experiment, unless stated otherwise, was repeated
lae without nested probabilistic operators, the corresstne 100 times. Average verification times (milliseconds) and
conditions of the algorithms of Ymer and VESTA are number of used observations, have logarithmic scale and
the relaxed versions thereof given in_[25]. An extended gre based on tool's statistif Peak memory usage of
discussion about the tool's simulation parameters can bethe tools was collected by sampling process-memory con-
found in Section7.1 of [31]. sumption (approximately) every00 msec. The (actual)
MRMC has two parameterg: — the desired confidence confidence levels are computed as the average number of
of the result;6” — the upper bound on the width of the syccessful model-checking runs on each experiment. The
considerect. i. Confidence-level guaranteeb ¢’ is such  experiments were performed on a cluster-computer node
thaté’” < [b— pl, then the probability of getting the correct with two 2.33 GHz Intel Dual-Core Xeon processors (64-
answer to the model-checking problem is guaranteed to bepit) and 16 GB of RAM (time bounded- and unbounded-
at leasts. until formulae) and an Int& Core "2 Quad 2.40 GHz
Ymer has three parameters:— the desired probability of  processor (64-bit), 8 GB of RAM (steady-state formulae).

the false-positive answef, — the desired probability of the  The operating system was Linux, because it is supported
false-negative answef;— the half width of the indifference

region. Confidence-level guarantee$ ¢ is such thaty ¢ LA minor output modification was introduced into Ymer, sg€][32



by all the tools. Considering the discussion in Seclioh IV, the increase ofN, the numerically-computed proba1)il-
the main tool parameters were set as follows:{ = o = ities for the considered properties change as follows:
B =0.05 6 =§=0.01,p, =0.01 ands; = 0.1. for Prob(true U5 busy,): from 1.0000 to 0.9882;
These tool settings are expected to guarante€3hie for Prob(true UM10-80) serve;): from 0.9999 to 0.8944;
accuracy of the verification results. The accuracy can befor Prob(poll; U serveq): from 0.0016 to 0.0002; for
lower if the conditions specified in SectibnllV are violated. Prob(—serves U server): from 0.5213 to 0.5386; for
Also, when verifying the unbounded-until formulae with S (busy,): from 0.3481 to 0.1717.
VESTA, we use the default tool’s settings. For the steady- .
sate formulae we have chosen the minimal sample size, P20.95 (true U™ busyl). — the probability that sta-
and the sample-size step to b@00. The latter was done tion 1 becomes busy withir80 time units is at least

because for smaller model sizes we had prematuie gf9t5r.1ewrlr:rc]> dlglctr:ﬁziiino;\tfi’mg! t(r;? th?%S Sh;r\:\é 'tnhceregjfn
convergence, that was resulting in low confidence. i . ’ . )
vVerg W uiting in fow ! ber of observations (cf. Figd2). This is becauga)

Prob(true U!1*8% busy,) decreases and approaches the

VI. Experimental Results probability constraint ((95); (b) the model state space
grows, requiring for more and longer simulation paths.
Note that, Ymer does not support unbounded-until and For the largest model sizeM = 18), MRMC uses

VESTA cannot verify interval-until properties. Thus, our (réspectively)l.2, 3.6 and 10.2 times more observations
experimental results do not always include all the tools. than VESTA, Ymer P and Ymer. Yet, MRMC ig5, 3.2,
MRMC is the only tool that supports verification of the and 4.4 times faster than (respectively) Ymer, VESTA,
steady-state operator, which can be verified in a pure@nd Ymer P. For Ymer it means that either the tool does
simulation ) or hybrid () mode. In the latter case MOt hgve a sufficiently efﬁ_mem |mpllementat|on or th_at
the probabilities of reaching bottom strongly connected gampllng does not have a significant impact on verification
components are computed by means of numerical compulimes, when compared to the effort needed for, e.g.,
tations. Also, the regeneration method, used in steadg-sta Performing hypothesis testing. Still, the verification &
simulations, can be run in the original setting){ when of MRM{: are growing faster than that of the other tools.
the regeneration point is chosen arbitrarily, or using the According to Fig.[B, Ymer and VESTA use constant
heuristic H), when it is chosen to be the most recurring ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
state in a test run preceding the verification. Moreover, the ™} e ]
sample-size step for sequent@li. computations can be o
chosen to be fixedd) or dynamic ). In the latter case, the
tool exponentially increases the sample-size step duhieg t
simulations. Therefore, for each steady-state formula, we
have MRMC curves with names formed 8RM Crys
whereT € {P,H}, M € {O,H}, andS € {C, A}.

For both case studies, each tool and each model size

1000

Computation time, millisec(s)

(CPS: N > 15, TQN N > 511), the VSZ did not e ——
show any significant correlation (not more than2% ; ‘ ‘ ‘ ‘ VESHR
difference) with the verified until formulae. This means, ? ‘ e s oo W e
that in case of MRMC, the tool's memory consumption Fig. 1: CPS P.95 (true U089 busy,) (time)

was mostly caused by storing large state spaces in RAM.
Also, the memory consumption of Ymer and VESTA were

practically constant. Due to these facts, we do not provide
the VSZ plots of the until formulae, except for the first o405
one verified on the CPS case study.

A. Cyclic Server Polling System (CPS)

Number of states

For this case study we verified a bounded-until,
an interval-until, two unbounded-until, and a steady-
state formulae on the models with number of sta-
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tions N ranging from3 to 18 and the corresponding 2 Z . 5 P VI TR T
state-space sizes ranging fros6é to 7,077,888. With

Fig. 2: CPS P> 95 (true U1%8 busy,) (# observations)
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memory and the VSZ of MRMC, as predicted, grows 0-9888,i.e., they fallin the indifference region. Moreover,
with the model size. This implies that, since both Ymer the conditiony” < |b—p], required by MRMC for ensuring
the memory consumption for sampling is insignificant. More accurate answers as its algorithm first simulates until
The large memory usage of VESTA is dominated by the the c.i. is tighter thand’ and then continues simulation
amount of memory acquired by the JVM.

Confidence, probability

P>0.99 (true U108 serveq) — the probability that sta-
tion 1 is served within the time intervalo, 80] is at
least0.99. The confidence levels foN € {6, 9} (cf.

Computation time, millisec(s)

Fig. @) are compromised, especially in case of Ymer

Fig. 4: CPS:P>¢.99 (true U089 servey) (confidence)
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until it reaches the definite answer to the model-checking
problem. This increases the accuracy because the width
of the resultingc.i. can be much smaller tha#i. Also,
MRMC uses the Agresti-Coud. i. that is known to have a
coverage probability that exceeds the specified confidence.
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and Ymer P. This happens because the corresponding The model-checking times (cf. Figl 5) and the number

probabilities Prob(true U080 serve;) are 0.9988 and

of observations (cf. Figl6) indicate that the accuracy of
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MRMC comes at a price, as witnessed by the peaks for

N = 9. In general V = 18), MRMC is up to8 times
faster than Ymer P, but is up t1.7 times slower than

Ymer. The performance of the latter one is improving

with the growth of N. The reason for that is likely to

be the rapid increase of distance between the values of

Prob(true U“*8% serve;) and the probability bound of

the formula. In this case, Ymer P and MRMC continue

simulations until they reach the i. of the desired width

but Ymer, that uses sequential hypothesis testing, does not

need that, so it stops much earlier.

P>o.2 (polly U servey) — the probability that station
is served after being polled is at le@s2. Both MRMC and
VESTA showedl00% accuracy when model checking this

property. The performance results given in [iy. 7 indicate
that the time required by VESTA is almost constant for all

model sizes and for MRMC it is insignificantly small in
the beginning (up té&v = 12) and then starts growing. This

1 is served before statiohis at least).5. Fig.[d providgs
the model-checking times for MRMC which again showed
> 95% accuracy. The plots for VESTA are not present
because it did not terminate within thé minutes time-

out (compared to seconds required by MRMC). Fig. 10
shows the number of required observations. Notice that,
there is a significant drop fav = 17 and also the values
for N = 15 and16 are almost equal. At the same time, the
model-checking times for these valuesiéfshow a stable
and continuous increase. This strengthen our belief in that
supplementary computations, such as traversal through a
large pre-generated Markov chain, stored in RAM, give a
much stronger influence on the model-checking time than
the increase in the number of required observations.

S=0.19 (busy, ) — the steady-state probability of station
1 being busy is greater than19. Fig.[I1 provides the

10000

1000

Computation time, mill sec(s)

L L L L L L
2 4 6 8 10 12 14 16 18
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Fig. 12: CPS :Sx0.19 (busy,) (# observations)
model-checking times for MRMC which showed0%

contradictions to Fid]8. One can notice that the number of accuracy. Notice that up t& = 12 there is a significant
observations required by VESTA is growing whereas for difference between MRMC runs with the constant sample-
MRMC it is decreasing. Putting these facts together, we size step, the upper bunch of curves, and the dynamic

conclude that the increase of verification time for MRMC
might be caused by(i) the effort required for traversing
the large (up to about - 10° states) Markov chain stored
in RAM; (ii) the need to search for BSCCs. Still, MRMC
is at leastl0 times faster than VESTA.

P>o.5 (mserves U servey) — the probability that station

step, the lower bunch. Also, the latter ones are using
significantly more observations (cf. Fig12), from which
we conclude that re-computation ofi., on small models,
can significantly slow down model checking. Besides, for
N = 15,16 the estimated probabilities fall into the indif-
ference interval. The corresponding picks are especially
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distinctive for the M RMC,.c curves of Fig.[IR. Yet, N > 10 the number of observations grows uniformly for
this does not have any drastic affect on the correspondingdll tools. E.g., MRMC requires fror to 3.2 times more
model-checking times. This is because fér>= 12 the ~ observations than Ymer, and VESTA needs abbiff
effort needed for additional computations still exceeds th more samples than MRMC. The verification times show
effort required for simulating a large model. The mem- & different behaviour. VESTA has the slowest increase
ory consumption curves, cf. Fi§-113, all showing similar of time, Ymer’s times grow a bit faster, and MRMC has
behaviour. Yet, memory required to store samples, startsthe fastest time increase. In the worst cade= 1023),
playing an important role. Notice that, the VSZ values Ymer is only 2.3 times faster than VESTA, and about
of MRMC are significantly higher (up t&.1 times for 7% faster than MRMC. Considering the corresponding

N = 18) than in Fig.[B. increase in the number of observations, this might mean
that the Ymer's implementation is either not very efficient
B. Tandem Queueing Network (TQN) or that sampling does not have a sufficient effect on model

checking times, compared to supplementary computations.
Here we verified two bounded-until, one interval-unti, MRMC most likely suffers from the need to store and

one unbounded-until, and one steady-state formulae ontraverse the complete CTMC.
the models with the queue capaciti@s ranging from P<o.a (true U2 full) - the probability that both
2 to 1023 and the corresponding state-space sizes arequeues become full within time intervd0.5, 2] is at
ranging from15 to 2,096, 128. With the increase ofV, most 0.1. For this property all the tools showed0%
the numerically-computed probabilities for the considere accuracy. Once again, Ymer P was not able to finish
properties change as follows: fdtrob(true U 2! full): verification within 15 minutes. The performance results
from 0.0262 to 0.0000; for Prob(true Y10-5.2] full): from given in Fig.[I¥ an@16 show the behaviour similar to the
0.0225 to 0.0000; for Prob(true t119) full,): it is con-  one forP<o.on (true U2 full).
stantly 1.0000; for Prob(—full, U full,): from 0.0177 to ‘ ‘ ‘
0.0000; for S (full;): from 0.8032 to 0.9995. Since the 000 ]
value of N is changed in a non-linear manner, the hori- e
zontal axis of the plots given in this sectionlégjarithmic
P<o.o1 (true U™ full) — the probability that both
gueues become full withi time units is at mosb.01.
There are no results for Ymer P because it was not
terminating within thel 5 minutes time-out. The confidence
estimates in Fid_14 exhibit a slight decrease of confidence
for Ymer and VESTA atV = 2. This is due to the fact that
in this caseProb(true U!*?) full) = 0.0262 is relatively I
close to the probability bound. Still, the confidence levels 1 m 100 1000
stay above the theoretically predicted one. As before, '
MRMC is generally faster than the other tools (cf. Figl 15)
but levels out with Ymer atV = 1023. Also, its model P<o.0s (true U010 fully) — the probability that the
checking times grow faster that that of the other tools. first queue becomes full within0 time units is at most
The peaks in MRMC plots folV = 2 (see also Fid—16) is  0.98. In this case Ymer P successfully verified the formula,
the price it pays for being00% accurate. Notice that, for and all the tools werd00% accurate. The performance

Computation time, millisec(s)

Fig. 15: TQN:P<q.01 (true UI%2 full) (time)
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displayed in Fig[CZI9 and Fid._P0, are similar to the ones
for the previous two properties.

P<o.03 (0fully U fully) — the probability that the
second queue becomes full before the first queue is at
most 0.03. Both, VESTA and MRMC were completely
accurate in their model-checking results. The verification
times and the number of observations in Higl 21 22
reflect that, sinceProb(—full; U full,) = 0.000 for all
N > 10, VESTA needs an almost constant amount
of observations to decide on the property. This can be
because it uses hypothesis testing and that the distance
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have any good explanation for the decrease in the number
of needed observations and the almost constant values

1e+07 |

for N > 50. Note that, verifying the given steady-state
property in the worst caseM = 1023, MRMCpma)
requires about.2 times more memory (cf. Fiﬂ}ithan
verifying, e.g.,P<o.01 (true U1%? full) for N = 1023.

1e+06 [

Number of states

VI1I. Conclusions

100000

= Our analysis showed that for until formulae the peak-
L - — — memory consumption (VSZ) of MRMC grows in accor-
N dance with the growth of the model sizes. This is due

Fig. 24: TON:S>0.999 (fully) (# observations) to using the pre-generated Markov chain, as opposed
to the on-demand state-space generation implemented in
Ymer and VESTA. The later tools show (almost) constant
memory consumption. For the steady-state operator the
situation is different. When model checked with MRMC,
for the same model size, VSZ values can be uptid
(TQN, N = 1023) times larger than the ones for the
until formula. This means that memory needed for storing
sampled data is almost negligible when verifying until, and
is significant when verifying steady-state formulae.

The actual confidence levels of all tools were within
' theoretically predicted bounds. At the same time MRMC
showed high accuracy even in cases when the sufficient
conditions for providing these bounds were violated.
Ymer P and VESTA were not always able to provide
odel checking times within th&5 minutes time out. In
€ all other cases, the model-checking times for all the tools
o were within seconds. The exception is Ymer P, cf. Elg. 5.
sample-s[ze increase saves a lot of effort ne_eded _for "®-On the considered models, verification times of MRMC
computation of thec.i. For N > 50 the pure simulation were mostly several times (up i) smaller than that of

method r_equires more time. This is because, althoughl foerer and VESTA, but the performance of MRMC was
an ergodic CTMC there is no need to compute reachability rapidly decreasing with growth of the model sizes. This

probabilities, the pure and hybrid simulation methods havemight be because, e.g., generating random paths through
two dllﬁe_rteznt_l_|rr111pleme_ntzt|ogs andt_the_formerzr:lasha h'%::etr a large Markov chain requires addressing far distant blocks
complexity. The required observation in Figl 24 show tha of RAM. Another observation is that, for steady-state simu-

MRMC with the dynamic sample-size increase needs More|_+ions on smaller models\ < 12 for CPS, andV < 511
observations forN < 50, and for N > 50 all curves - ’ -

exhibit comparable behaviour. At the moment, we do not 2N = 10, 50: An inadequate statistics due to small verification times.

between the probability boun@l03 and the true value of
Prob(—full, U full,) stays constant. Still, MRMC is at
least6 times faster than VESTA.

S=>0.999 (full;) —the steady-state probability of the first
gueue being full is greater thah999 For this property
we set the width of the indifference region to B£003.
Although MRMC wasl100% accurate, we should note that
in case of N = 511 the estimated probability falls in the
indifference region. Also, using pure regeneration method
without the heuristic for choosing the regeneration point
failed. MRMC was unable to finish simulations withing
15 minutes timeout. The reason for that is that the TQN’s
model is an ergodic Markov chain. The latter, especially
for larger models, causes most of the regeneration cyclesin
to be enormously long. Once again, cf. Higl 23, we se
that for smaller model sizes\ < 50) having a dynamic



for TQN) computation of confidence intervals requires [13]
much more effort than doing sampling. To conclude, we
must admit that Ymer showed an excellent performance onjy 4
larger models, where in one case it wais7 times faster

than MRMC (cf. Fig[b). Also, Ymer always needed fewer
observations to provide correct model-checking results 5
than other tools. This means that its algorithms are more
efficient from the simulation point of view. Considering

its performance on smaller models, we must conclude g
that either its implementation is not very efficient or that

the sampling effort does not play a significant role when
compared to supplementary computations. Last, but not
least is VESTA which, considering that it is implemented [17]
in Java, showed a reasonably good performance. The tool
typically required more observations, but, with the growth

of the model sizes, the increase in their numbers was not[18]
as significant as in case of MRMC.
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