Joost-Pieter Katoen <sup>1,2</sup>, Tim Kemna <sup>1</sup>, Ivan Zapreev <sup>1,2</sup> and David N. Jansen <sup>1,2</sup>

University of Twente<sup>1</sup> RWTH-Aachen<sup>2</sup>

March 28, 2007

▲日▼▲□▼▲□▼▲□▼ □ ののの

Outline

# Probabilistic model checking

### Enjoys a rapid increase of interest

- Case studies:
  - Biological process modeling
  - Communication protocols
  - Randomised algorithms

• Quantum computing

- Planning and Al
- Security
- Is Formalisms that use probabilistic model checking:
  - Probabilistic extension of Promela (Baier et al., 2005a)
  - Stochastic process algebra PEPA (Hillston, 1996)
  - Stochastic Petri nets (D'Aprile et al., 2004)
  - Statemate (Bode et al., 2006)
- Model checking tools:
  - LiQuor (Baier et al., 2005a)
  - PRISM (Kwiatkowska et al., 2004)
  - MRMC (Katoen et al., 2005)

Outline

# Probabilistic model checking

- Enjoys a rapid increase of interest
- ② Case studies:
  - Biological process modeling
  - Communication protocols
  - Randomised algorithms

• Quantum computing

▲日▼▲□▼▲□▼▲□▼ □ ののの

- Planning and Al
- Security

I Formalisms that use probabilistic model checking:

- Probabilistic extension of Promela (Baier et al., 2005a)
- Stochastic process algebra PEPA (Hillston, 1996)
- Stochastic Petri nets (D'Aprile et al., 2004)
- Statemate (Bode et al., 2006)
- Model checking tools:
  - LiQuor (Baier et al., 2005a)
  - PRISM (Kwiatkowska et al., 2004)
  - MRMC (Katoen et al., 2005)

Outline

# Probabilistic model checking

- Enjoys a rapid increase of interest
- ② Case studies:
  - Biological process modeling
  - Communication protocols
  - Randomised algorithms

• Quantum computing

▲日▼▲□▼▲□▼▲□▼ □ ののの

- Planning and Al
- Security
- Sormalisms that use probabilistic model checking:
  - Probabilistic extension of Promela (Baier et al., 2005a)
  - Stochastic process algebra PEPA (Hillston, 1996)
  - Stochastic Petri nets (D'Aprile et al., 2004)
  - Statemate (Bode et al., 2006)
- Model checking tools:
  - LiQuor (Baier et al., 2005a)
  - PRISM (Kwiatkowska et al., 2004)
  - MRMC (Katoen et al., 2005)

Outline

# Probabilistic model checking

- Enjoys a rapid increase of interest
- ② Case studies:
  - Biological process modeling
  - Communication protocols
  - Randomised algorithms

• Quantum computing

▲日▼▲□▼▲□▼▲□▼ □ ののの

- Planning and Al
- Security
- Sormalisms that use probabilistic model checking:
  - Probabilistic extension of Promela (Baier et al., 2005a)
  - Stochastic process algebra PEPA (Hillston, 1996)
  - Stochastic Petri nets (D'Aprile et al., 2004)
  - Statemate (Bode et al., 2006)
- Model checking tools:
  - LiQuor (Baier et al., 2005a)
  - PRISM (Kwiatkowska et al., 2004)
  - MRMC (Katoen et al., 2005)

Outline

# Motivation

#### Probabilistic model checking

State-space explosion

State-space reduction techniques:

- Symmetry reduction (Kwiatkowska et al., 2006)
- Binary decision diagrams (Kwiatkowska et al., 2004)
- Abstraction refinement (D'Argenio et al., 2001)
- Bisimulation equivalences (Baier et al., 2005b)

#### Bisimulation minimization

- Huge state-space reduction
- Is fully automated
- Drastic time penalty for LTL model checking (Fisler and Vardi, 1998; Fisler and Vardi, 1999; Fisler and Vardi, 2002)

イロト イポト イヨト イヨト

Outline

# Motivation

#### Probabilistic model checking

- State-space explosion
- 2 State-space reduction techniques:
  - Symmetry reduction (Kwiatkowska et al., 2006)
  - Binary decision diagrams (Kwiatkowska et al., 2004)
  - Abstraction refinement (D'Argenio et al., 2001)
  - Bisimulation equivalences (Baier et al., 2005b)

#### Bisimulation minimization

- Huge state-space reduction
- Is fully automated
- Drastic time penalty for LTL model checking (Fisler and Vardi, 1998; Fisler and Vardi, 1999; Fisler and Vardi, 2002)

イロト ヘロト イヨト

Outline

# Motivation

#### Probabilistic model checking

- State-space explosion
- 2 State-space reduction techniques:
  - Symmetry reduction (Kwiatkowska et al., 2006)
  - Binary decision diagrams (Kwiatkowska et al., 2004)
  - Abstraction refinement (D'Argenio et al., 2001)
  - Bisimulation equivalences (Baier et al., 2005b)

- Huge state-space reduction
- Is fully automated
- Drastic time penalty for LTL model checking (Fisler and Vardi, 1998; Fisler and Vardi, 1999; Fisler and Vardi, 2002)

Outline

# Motivation

#### Probabilistic model checking

- State-space explosion
- 2 State-space reduction techniques:
  - Symmetry reduction (Kwiatkowska et al., 2006)
  - Binary decision diagrams (Kwiatkowska et al., 2004)
  - Abstraction refinement (D'Argenio et al., 2001)
  - Bisimulation equivalences (Baier et al., 2005b)

- Huge state-space reduction
- Is fully automated
- Drastic time penalty for LTL model checking (Fisler and Vardi, 1998; Fisler and Vardi, 1999; Fisler and Vardi, 2002)

Outline

# Motivation

#### Probabilistic model checking

- State-space explosion
- 2 State-space reduction techniques:
  - Symmetry reduction (Kwiatkowska et al., 2006)
  - Binary decision diagrams (Kwiatkowska et al., 2004)
  - Abstraction refinement (D'Argenio et al., 2001)
  - Bisimulation equivalences (Baier et al., 2005b)

- Huge state-space reduction
- Is fully automated
- Drastic time penalty for LTL model checking (Fisler and Vardi, 1998; Fisler and Vardi, 1999; Fisler and Vardi, 2002)

Outline

# Motivation

#### Probabilistic model checking

- State-space explosion
- 2 State-space reduction techniques:
  - Symmetry reduction (Kwiatkowska et al., 2006)
  - Binary decision diagrams (Kwiatkowska et al., 2004)
  - Abstraction refinement (D'Argenio et al., 2001)
  - Bisimulation equivalences (Baier et al., 2005b)

- Huge state-space reduction
- Is fully automated
- Drastic time penalty for LTL model checking (Fisler and Vardi, 1998; Fisler and Vardi, 1999; Fisler and Vardi, 2002)

Outline

### What is our contribution?

### An empirical study

We did an empirical study on the effect of bisimulation minimization on probabilistic model checking.

Our main result

Bisimulation minimization often pays off.

Outline

### What is our contribution?

### An empirical study

We did an empirical study on the effect of bisimulation minimization on probabilistic model checking.

Our main result

Bisimulation minimization often pays off.

Outline

# What is our contribution?

#### Consider

- Known theory
- Discrete and continuous time Markov Chains
- Reward extensions

#### An empirical study

- Use benchmark problems in the field (Kwiatkowska et al., 2007)
- Investigate 7 case studies
- Perform about 1870 experiments

- The state-space reduction
- Time of lumping + verification
- Peak-memory consumption

Outline

# What is our contribution?

#### Consider

- Known theory
- Discrete and continuous time Markov Chains
- Reward extensions

#### An empirical study

- Use benchmark problems in the field (Kwiatkowska et al., 2007)
- Investigate 7 case studies
- Perform about 1870 experiments

- The state-space reduction
- Time of lumping + verification
- Peak-memory consumption

Outline

# What is our contribution?

#### Consider

- Known theory
- Discrete and continuous time Markov Chains
- Reward extensions

#### An empirical study

- Use benchmark problems in the field (Kwiatkowska et al., 2007)
- Investigate 7 case studies
- Perform about 1870 experiments

- The state-space reduction
- Time of lumping + verification
- Peak-memory consumption

Outline

# What is our contribution?

#### Consider

- Known theory
- Discrete and continuous time Markov Chains
- Reward extensions

#### An empirical study

- Use benchmark problems in the field (Kwiatkowska et al., 2007)
- Investigate 7 case studies
- Perform about 1870 experiments

- The state-space reduction
- Time of lumping + verification
- Peak-memory consumption

Outline

# What is our contribution?

#### Consider

- Known theory
- Discrete and continuous time Markov Chains
- Reward extensions

#### An empirical study

- Use benchmark problems in the field (Kwiatkowska et al., 2007)
- Investigate 7 case studies
- Perform about 1870 experiments

- The state-space reduction
- Time of lumping + verification
- Peak-memory consumption

Outline

# What is our contribution?

#### Consider

- Known theory
- Discrete and continuous time Markov Chains
- Reward extensions

#### An empirical study

- Use benchmark problems in the field (Kwiatkowska et al., 2007)
- Investigate 7 case studies
- Perform about 1870 experiments

- The state-space reduction
- Time of lumping + verification
- Peak-memory consumption

Outline

# What is our contribution?

#### Consider

- Known theory
- Discrete and continuous time Markov Chains
- Reward extensions

#### An empirical study

- Use benchmark problems in the field (Kwiatkowska et al., 2007)
- Investigate 7 case studies
- Perform about 1870 experiments

- The state-space reduction
- Time of lumping + verification
- Peak-memory consumption

Outline

# What is our contribution?

#### Consider

- Known theory
- Discrete and continuous time Markov Chains
- Reward extensions

#### An empirical study

- Use benchmark problems in the field (Kwiatkowska et al., 2007)
- Investigate 7 case studies
- Perform about 1870 experiments

- The state-space reduction
- Time of lumping + verification
- Peak-memory consumption

Outline

# What is our contribution?

#### Consider

- Known theory
- Discrete and continuous time Markov Chains
- Reward extensions

#### An empirical study

- Use benchmark problems in the field (Kwiatkowska et al., 2007)
- Investigate 7 case studies
- Perform about 1870 experiments

- The state-space reduction
- Time of lumping + verification
- Peak-memory consumption

Preliminaries





Bisimulation minimization

④ Experimental results





Preliminaries

### The considered models

#### Definition ( Discrete time Markov chain)

- A (labelled) DTMC is a tuple (S, P, AP, L):
  - S a finite set of states,
  - AP a finite set of atomic propositions,
  - $L: S \rightarrow 2^{AP}$  a *labelling* function,
  - $\mathcal{P}: \mathcal{S} \times \mathcal{S} \rightarrow [0,1]$  a probability matrix,

$$\sum_{s'\in S}\mathcal{P}(s,s')=1$$
 for all  $s\in S$ 

#### Plus

Continuous time Markov chains
 Reward extentions of both



Preliminaries

### The considered models

### Definition ( Discrete time Markov chain)

- A (labelled) DTMC is a tuple  $(S, \mathcal{P}, AP, L)$ :
  - S a finite set of states,
  - AP a finite set of atomic propositions,
  - $L: S \rightarrow 2^{AP}$  a *labelling* function,
  - $\mathcal{P}: S \times S \rightarrow [0,1]$  a probability matrix,

$$\sum_{s'\in S} \mathcal{P}(s,s') = 1$$
 for all  $s\in S$ 

#### Plus

- Continuous time Markov chains
- Reward extentions of both



Preliminaries

# Probabilistic time-bounded reachability

#### Example

Determine states from which *win* states may be reached with a probability at least 0.9, within 10 time steps.

 $\mathcal{P}_{\geq 0.9}(\Diamond^{\leq 10} \textit{win})$ 



Preliminaries

# Probabilistic time-bounded reachability

#### Example

Determine states from which *win* states may be reached with a probability at least 0.9, within 10 time steps.

 $\mathcal{P}_{\geq 0.9}(\Diamond^{\leq 10} \textit{win})$ 



Preliminaries

# Probabilistic time-bounded reachability

#### Example

Determine states from which *win* states may be reached with a probability at least 0.9, within 10 time steps.

 $\mathcal{P}_{\geq 0.9}(\Diamond^{\leq 10} \textit{win})$ 

| Model |  |
|-------|--|
|       |  |
|       |  |
|       |  |



・ロト ・ 一下・ ・ ヨト ・ 日 ・

Preliminaries

# Probabilistic time-bounded reachability

#### Example

Determine states from which *win* states may be reached with a probability at least 0.9, within 10 time steps.

 $\mathcal{P}_{\geq 0.9}(\Diamond^{\leq 10} \mathit{win})$ 

| Model |  |
|-------|--|
|       |  |
|       |  |
|       |  |



Preliminaries

## Probabilistic time-bounded reachability

#### Example

Determine states from which *win* states may be reached with a probability at least 0.9, within 10 time steps.

 $\mathcal{P}_{\geq 0.9}(\Diamond^{\leq 10} \textit{win})$ 

| Model   | Example                                                               |
|---------|-----------------------------------------------------------------------|
| DTMC    | $\mathcal{P}_{\geq 0.9}(\Diamond^{\leq 10} \textit{win})$             |
| СТМС    | $\mathcal{P}_{\geq 0.9}(\Diamond^{\leq 3.5} \mathit{win})$            |
| Rewards | $\mathcal{P}_{\geq 0.9}(\Diamond^{\leq 15}_{\leq 13.7} \textit{win})$ |



・ロト ・ 一下・ ・ ヨト ・ 日 ・

Preliminaries

## Probabilistic time-bounded reachability



◆□ > ◆□ > ◆三 > ◆三 > ・三 ・ のへで

Bisimulation minimization







4 Experimental results



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● のへで

Bisimulation minimization

### **Bisimulation minimization**

Definition (Strong bisimulation (Buchholz, 1994; Hillston, 1996))

- Let  $D = (S, \mathcal{P}, AP, L)$  be a DTMC.
- $\Delta$  an equivalence relation on S.
- $S/\Delta$  is the *quotient* of *S* under  $\Delta$ .
- $\Delta$  is a strong bisimulation, if  $s_1 \Delta s_2 \Rightarrow$

 $L(s_1) = L(s_2)$  $\forall B \in S/\Delta : \mathcal{P}(s_1, B) = \mathcal{P}(s_2, B)$ 



Bisimulation minimization

### **Bisimulation minimization**

Definition (Strong bisimulation (Buchholz, 1994; Hillston, 1996))

- Let  $D = (S, \mathcal{P}, AP, L)$  be a DTMC.
- $\Delta$  an equivalence relation on S.
- $S/\Delta$  is the *quotient* of *S* under  $\Delta$ .
- $\Delta$  is a strong bisimulation, if  $s_1 \Delta s_2 \Rightarrow$

 $L(s_1) = L(s_2)$  $\forall B \in S/\Delta : \mathcal{P}(s_1, B) = \mathcal{P}(s_2, B)$ 



Bisimulation minimization

### Preservation results

#### Theorem (1, (Aziz et al., 1995))

# Let D be a DTMC, $\Delta$ a bisimulation and $s \in S$ . Then $\forall \Phi \in PCTL^*$

$$s \models_D \Phi \iff [s]_\Delta \models_{D/\Delta} \Phi$$

#### Note

Probabilistic bisimulation is the coarsest relation for Theor. 1.

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

• Since  $s \sim [s]_{\Delta}$ , verify properties on a bisimulation quotient.

Bisimulation minimization

### Preservation results

#### Theorem (1, (Aziz et al., 1995))

Let D be a DTMC,  $\Delta$  a bisimulation and  $s \in S.$  Then  $\forall \Phi \in PCTL^*$ 

$$s \models_D \Phi \iff [s]_\Delta \models_{D/\Delta} \Phi$$

#### Note

- Probabilistic bisimulation is the coarsest relation for Theor. 1.
- Since  $s \sim [s]_{\Delta}$ , verify properties on a bisimulation quotient.

Bisimulation minimization

### Preservation results

#### Theorem (1, (Aziz et al., 1995))

Let D be a DTMC,  $\Delta$  a bisimulation and  $s \in S.$  Then  $\forall \Phi \in PCTL^*$ 

$$s \models_D \Phi \iff [s]_\Delta \models_{D/\Delta} \Phi$$

#### Note

• Probabilistic bisimulation is the coarsest relation for Theor. 1.

• Since  $s \sim [s]_{\Delta}$ , verify properties on a bisimulation quotient.

Bisimulation minimization

### Preservation results

#### Theorem (1, (Aziz et al., 1995))

Let D be a DTMC,  $\Delta$  a bisimulation and  $s \in S.$  Then  $\forall \Phi \in PCTL^*$ 

$$s \models_D \Phi \iff [s]_\Delta \models_{D/\Delta} \Phi$$

#### Note

- Probabilistic bisimulation is the coarsest relation for Theor. 1.
- Since  $s \sim [s]_{\Delta}$ , verify properties on a bisimulation quotient.

Bisimulation minimization

# Measure-driven bisimulation

#### Definition (*F*-bisimulation (Baier et al., 2000))

- Let  $D = (S, \mathcal{P}, AP, L)$  be a DTMC.
- F is a subset of PCTL formulas.
- $\Delta$  an equivalence relation on S.
- $S/\Delta$  is the *quotient* of S under  $\Delta$ .
- $\Delta$  is an *F*-bisimulation on *S*, if  $s_1 \Delta s_2$ :

 $\forall \Phi \in F : s_1 \models \Phi \iff s_2 \models \Phi$  $\forall B \in S/\Delta : \mathcal{P}(s_1, B) = \mathcal{P}(s_2, B)$ 

#### Example (*F*-bisimulation)

Let us take  $F = \{win\}$ .



Bisimulation minimization

# Measure-driven bisimulation

#### Definition (*F*-bisimulation (Baier et al., 2000))

- Let  $D = (S, \mathcal{P}, AP, L)$  be a DTMC.
- F is a subset of PCTL formulas.
- $\Delta$  an equivalence relation on S.
- $S/\Delta$  is the *quotient* of S under  $\Delta$ .
- $\Delta$  is an *F*-bisimulation on *S*, if  $s_1 \Delta s_2$ :

 $\forall \Phi \in F : s_1 \models \Phi \iff s_2 \models \Phi$  $\forall B \in S/\Delta : \mathcal{P}(s_1, B) = \mathcal{P}(s_2, B)$ 

#### Example (*F*-bisimulation)

Let us take  $F = \{win\}$ .



Bisimulation minimization

# Measure-driven bisimulation

#### Definition (*F*-bisimulation (Baier et al., 2000))

- Let  $D = (S, \mathcal{P}, AP, L)$  be a DTMC.
- F is a subset of PCTL formulas.
- $\Delta$  an equivalence relation on S.
- $S/\Delta$  is the *quotient* of S under  $\Delta$ .
- $\Delta$  is an *F*-bisimulation on *S*, if  $s_1 \Delta s_2$ :

 $\forall \Phi \in F : s_1 \models \Phi \iff s_2 \models \Phi$  $\forall B \in S/\Delta : \mathcal{P}(s_1, B) = \mathcal{P}(s_2, B)$ 

#### Example (*F*-bisimulation)

Let us take  $F = \{win\}$ .



Bisimulation minimization

### Preservation results

#### Theorem ((Baier et al., 2003))

Let D be a DTMC,  $\Delta$  an F-bisimulation and  $s \in S$ . Then  $\forall \Phi \in PCTL_F$ 

$$s \models_D \Phi \iff [s]_\Delta \models_{D/\Delta} \Phi$$

#### Strong bisimulation vs. *F*-bisimulation

- Strong bisimilarity is F-bisimilarity for F = AP
- *F*-bisimulation is coarser than strong bisimulation
- Verify properties on F-bisimulation quotient

Bisimulation minimization

### Preservation results

#### Theorem ((Baier et al., 2003))

Let D be a DTMC,  $\Delta$  an F-bisimulation and  $s \in S$ . Then  $\forall \Phi \in PCTL_F$ 

$$s \models_D \Phi \iff [s]_\Delta \models_{D/\Delta} \Phi$$

#### Strong bisimulation vs. F-bisimulation

- Strong bisimilarity is *F*-bisimilarity for F = AP
- *F*-bisimulation is coarser than strong bisimulation
- Verify properties on F-bisimulation quotient

Bisimulation minimization

### Obtaining bisimulation quotient

#### Strong bisimulation (Derisavi et al., 2003)

- Partition refinement algorithm
- The worst-time complexity is O(|P|log|S|)

#### *F*-bisimulation

A slight modification of the partition refinement algorithm.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Bisimulation minimization

# Obtaining bisimulation quotient

#### Strong bisimulation (Derisavi et al., 2003)

- Partition refinement algorithm
- The worst-time complexity is O(|P|log|S|)

### F-bisimulation

• A slight modification of the partition refinement algorithm.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Bisimulation minimization

# Initial partitioning for $\mathcal{P}_{\leq p}(\Phi \cup \Psi)$ and $\mathcal{P}_{\leq p}(\Phi \cup [0,t] \Psi)$

#### Note

- Strong bisimulation: Atomic propositions
- *F* bisimulation: Formulas Φ, Ψ

#### $\mathcal{P}_{\leq ho}(\Phi \cup \Psi)$

- Define  $U_0 = Sat(\mathcal{P}_{<0}(\Phi \cup \Psi)).$
- Define  $U_1 = Sat(\mathcal{P}_{\geq 1}(\Phi \cup \Psi))$
- Choose  $F = \{U_0, U_1, S \setminus (U_0 \cup U_1)\}.$
- Apply F-bisimulation

#### $S_1$ vs. $U_1$

A finer initial partitioning

#### $\mathcal{P}_{\lhd o}(\Phi \cup^{[0,t]} \Psi)$

- Define  $U_0 = Sat(\mathcal{P}_{\leq 0}(\Phi \cup \Psi))$
- Define  $S_1 = Sat(\Psi)$ .
- Choose  $F = \{U_0, S_1, S \setminus (U_0 \cup S_1)\}$ .

・ロト ・ 一下・ ・ ヨト

э

Apply F-bisimulation

Bisimulation minimization

# Initial partitioning for $\mathcal{P}_{\leq p}(\Phi \cup \Psi)$ and $\mathcal{P}_{\leq p}(\Phi \cup [0,t] \Psi)$

#### Note

- Strong bisimulation: Atomic propositions
- *F* bisimulation: Formulas Φ, Ψ

#### $\mathcal{P}_{\leq ho}(\Phi \cup \Psi)$

- Define  $U_0 = Sat(\mathcal{P}_{<0}(\Phi \cup \Psi)).$
- Define  $U_1 = Sat(\mathcal{P}_{\geq 1}(\Phi \cup \Psi))$
- Choose  $F = \{U_0, U_1, S \setminus (U_0 \cup U_1)\}.$
- Apply F-bisimulation

#### $S_1$ vs. $U_1$

A finer initial partitioning

#### $\mathcal{P}_{\lhd o}(\Phi \cup [0,t] \Psi)$

- Define  $U_0 = Sat(\mathcal{P}_{\leq 0}(\Phi \cup \Psi))$
- Define  $S_1 = Sat(\Psi)$ .
- Choose  $F = \{U_0, S_1, S \setminus (U_0 \cup S_1)\}.$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

э

Apply F-bisimulation

Bisimulation minimization

# Initial partitioning for $\mathcal{P}_{\trianglelefteq p}(\Phi \cup \Psi)$ and $\mathcal{P}_{\trianglelefteq p}(\Phi \cup [0,t] \Psi)$

#### Note

- Strong bisimulation: Atomic propositions
- *F* bisimulation: Formulas Φ, Ψ

### $\mathcal{P}_{\leq p}(\Phi \cup \Psi)$

- Define  $U_0 = Sat(\mathcal{P}_{\leq 0}(\Phi \cup \Psi)).$
- Define  $U_1 = Sat(\mathcal{P}_{\geq 1}(\Phi \cup \Psi)).$
- Choose  $F = \{U_0, U_1, S \setminus (U_0 \cup U_1)\}.$
- Apply F-bisimulation.

#### $S_1$ vs. $U_1$

A finer initial partitioning

#### $\mathcal{P}_{\triangleleft ho}(\Phi \cup [0,t] \Psi)$

- Define  $U_0 = Sat(\mathcal{P}_{\leq 0}(\Phi \cup \Psi))$
- Define  $S_1 = Sat(\Psi)$ .
- Choose  $F = \{U_0, S_1, S \setminus (U_0 \cup S_1)\}.$

▲日▼▲□▼▲□▼▲□▼ □ ののの

• Apply F-bisimulation

Bisimulation minimization

# Initial partitioning for $\mathcal{P}_{\trianglelefteq p}(\Phi \cup \Psi)$ and $\mathcal{P}_{\trianglelefteq p}(\Phi \cup [0,t] \Psi)$

#### Note

- Strong bisimulation: Atomic propositions
- *F* bisimulation: Formulas Φ, Ψ

### $\mathcal{P}_{\leq p}(\Phi \cup \Psi)$

- Define  $U_0 = Sat(\mathcal{P}_{\leq 0}(\Phi \cup \Psi)).$
- Define  $U_1 = Sat(\mathcal{P}_{\geq 1}(\Phi \cup \Psi)).$
- Choose  $F = \{U_0, U_1, S \setminus (U_0 \cup U_1)\}.$
- Apply F-bisimulation.

#### $S_1$ vs. $U_1$

A finer initial partitioning

### $\mathcal{P}_{\triangleleft p}(\Phi \mathrm{U}^{[0,t]} \Psi)$

- Define  $U_0 = Sat(\mathcal{P}_{\leq 0}(\Phi \cup \Psi)).$
- Define  $S_1 = Sat(\Psi)$ .
- Choose  $F = \{U_0, S_1, S \setminus (U_0 \cup S_1)\}.$
- Apply F-bisimulation.

Bisimulation minimization

# Initial partitioning for $\mathcal{P}_{\leq p}(\Phi \cup \Psi)$ and $\mathcal{P}_{\leq p}(\Phi \cup U^{[0,t]} \Psi)$

#### Note

- Strong bisimulation: Atomic propositions
- *F* bisimulation: Formulas Φ, Ψ

### $\mathcal{P}_{\triangleleft \rho}(\Phi \cup \Psi)$

- Define  $U_0 = Sat(\mathcal{P}_{\leq 0}(\Phi \cup \Psi)).$
- Define  $U_1 = Sat(\mathcal{P}_{\geq 1}(\Phi \cup \Psi)).$
- Choose  $F = \{U_0, U_1, S \setminus (U_0 \cup U_1)\}.$
- Apply F-bisimulation.

#### $S_1$ vs. $U_1$

A finer initial partitioning

### $\mathcal{P}_{\triangleleft p}(\Phi \cup [0,t] \Psi)$

- Define  $U_0 = Sat(\mathcal{P}_{\leq 0}(\Phi \cup \Psi)).$
- Define  $S_1 = Sat(\Psi)$ .
- Choose  $F = \{U_0, S_1, S \setminus (U_0 \cup S_1)\}.$
- Apply F-bisimulation.

Experimental results



- 2 Preliminaries
- Bisimulation minimization
- 4 Experimental results
- 5 Conclusions and future works

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Experimental results

### Cyclic polling server (Ibe and Trivedi, 1990)



 $\mathcal{P}_{\leq q}(\neg serve_1 \cup serve_1)$ 

Experimental results

### Cyclic polling server (Ibe and Trivedi, 1990)



Run times for  $\mathcal{P}_{\leq q}(\neg serve_1 \ \mathrm{U}^{[0,1010]} \ serve_1)$  and  $\mathcal{P}_{\leq q}(\neg serve_1 \ \mathrm{U} \ serve_1)$ 

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Experimental results

### Crowds protocol (Reiter and Rubin, 1998)



State-space reductions for eventually observing the real sender more than

once

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Experimental results

### Crowds protocol (Reiter and Rubin, 1998)



Run times for eventually observing the real sender more than once

Experimental results

|               |         |           | symmet | ry reduction | (Kwiatkows | ska et al. | , 2006) |
|---------------|---------|-----------|--------|--------------|------------|------------|---------|
| original CTMC |         |           |        | reduced CTI  | MC         | red. f     | actor   |
| Ν             | states  | ver. time | states | red. time    | ver. time  | states     | time    |
| 2             | 1024    | 5.6       | 528    | 12           | 2.9        | 1.93       | 0.38    |
| 3             | 32768   | 410       | 5984   | 100          | 59         | 5.48       | 2.58    |
| 4             | 1048576 | 22000     | 52360  | 360          | 820        | 20.0       | 18.3    |

|               |         |           | bisimulation minimisation |           |           |             |      |
|---------------|---------|-----------|---------------------------|-----------|-----------|-------------|------|
| original CTMC |         |           | lumped CTMC               |           |           | red. factor |      |
| Ν             | states  | ver. time | blocks                    | lump time | ver. time | states      | time |
| 2             | 1024    | 5.6       | 56                        | 1.4       | 0.3       | 18.3        | 3.3  |
| 3             | 32768   | 410       | 252                       | 170       | 1.3       | 130         | 2.4  |
| 4             | 1048576 | 22000     | 792                       | 10200     | 4.8       | 1324        | 2.2  |

Experimental results

|               |         |           | symmet | ry reduction | (Kwiatkows | ska et al. | , 2006) |
|---------------|---------|-----------|--------|--------------|------------|------------|---------|
| original CTMC |         |           |        | reduced CTI  | MC         | red. f     | actor   |
| Ν             | states  | ver. time | states | red. time    | ver. time  | states     | time    |
| 2             | 1024    | 5.6       | 528    | 12           | 2.9        | 1.93       | 0.38    |
| 3             | 32768   | 410       | 5984   | 100          | 59         | 5.48       | 2.58    |
| 4             | 1048576 | 22000     | 52360  | 360          | 820        | 20.0       | 18.3    |

|               |         |           | bisimulation minimisation |           |           |             |      |
|---------------|---------|-----------|---------------------------|-----------|-----------|-------------|------|
| original CTMC |         |           | lumped CTMC               |           |           | red. factor |      |
| Ν             | states  | ver. time | blocks                    | lump time | ver. time | states      | time |
| 2             | 1024    | 5.6       | 56                        | 1.4       | 0.3       | 18.3        | 3.3  |
| 3             | 32768   | 410       | 252                       | 170       | 1.3       | 130         | 2.4  |
| 4             | 1048576 | 22000     | 792                       | 10200     | 4.8       | 1324        | 2.2  |

Experimental results

|               |         |           | symmet | ry reduction | (Kwiatkows | ska et al. | , 2006) |
|---------------|---------|-----------|--------|--------------|------------|------------|---------|
| original CTMC |         |           |        | reduced CTI  | MC         | red. f     | actor   |
| Ν             | states  | ver. time | states | red. time    | ver. time  | states     | time    |
| 2             | 1024    | 5.6       | 528    | 12           | 2.9        | 1.93       | 0.38    |
| 3             | 32768   | 410       | 5984   | 100          | 59         | 5.48       | 2.58    |
| 4             | 1048576 | 22000     | 52360  | 360          | 820        | 20.0       | 18.3    |

|               |         |           | bisimulation minimisation |           |           |             |      |
|---------------|---------|-----------|---------------------------|-----------|-----------|-------------|------|
| original CTMC |         |           | lumped CTMC               |           |           | red. factor |      |
| Ν             | states  | ver. time | blocks                    | lump time | ver. time | states      | time |
| 2             | 1024    | 5.6       | 56                        | 1.4       | 0.3       | 18.3        | 3.3  |
| 3             | 32768   | 410       | 252                       | 170       | 1.3       | 130         | 2.4  |
| 4             | 1048576 | 22000     | 792                       | 10200     | 4.8       | 1324        | 2.2  |

Experimental results

|               |         |           | symmet | ry reduction | (Kwiatkows | ska et al. | , 2006) |
|---------------|---------|-----------|--------|--------------|------------|------------|---------|
| original CTMC |         |           |        | reduced CTI  | MC         | red. f     | actor   |
| Ν             | states  | ver. time | states | red. time    | ver. time  | states     | time    |
| 2             | 1024    | 5.6       | 528    | 12           | 2.9        | 1.93       | 0.38    |
| 3             | 32768   | 410       | 5984   | 100          | 59         | 5.48       | 2.58    |
| 4             | 1048576 | 22000     | 52360  | 360          | 820        | 20.0       | 18.3    |

|               |         |           | bisimulation minimisation |           |           |             |      |
|---------------|---------|-----------|---------------------------|-----------|-----------|-------------|------|
| original CTMC |         |           | lumped CTMC               |           |           | red. factor |      |
| Ν             | states  | ver. time | blocks                    | lump time | ver. time | states      | time |
| 2             | 1024    | 5.6       | 56                        | 1.4       | 0.3       | 18.3        | 3.3  |
| 3             | 32768   | 410       | 252                       | 170       | 1.3       | 130         | 2.4  |
| 4             | 1048576 | 22000     | 792                       | 10200     | 4.8       | 1324        | 2.2  |

Conclusions and future works



- 2 Preliminaries
- Bisimulation minimization
- ④ Experimental results



Conclusions and future works

### The end

#### Concluding remarks

- Significant, up to logarithmic, state-space reduction.
- The abstraction technique is fully automated.
- Strong bisimulation:
  - Sometimes, a substantial model-checking time reduction.
  - Sometimes, an increase of peak memory (by 50%).
- F-bisimulation:
  - Sometimes, a substantial model-checking time reduction.
  - The peak memory use is typically unchanged.
  - For reward case a decrease of peak memory (by 20-40%).

#### Future work

- Combine symmetry reduction with bisimulation.
- Extend experiments towards MDPs and simulation preorders.

References

Andova, S., Hermanns, H., and Katoen, J.-P.: 2003, in Formal Modeling and Analysis of Timed Systems (FORMATS), LNCS, Marseille, France

Aziz, A., Sanwal, K., Singhal, V., Brayton, R. K., and Sangiovanni-Vincentelli: 1995, in Computer Aided Verification (CAV), pp 155–165, Berlin, Germany

Baier, C., Ciesinski, F., and Größer, M.: 2005a, SIGMETRICS Perform. Eval. Rev. 32(4), 22

Baier, C., Haverkort, B., Hermanns, H., and Katoen, J.-P.: 2003, IEEE Trans. on Softw. Eng. 29(6), 524

Baier, C., Haverkort, B. R., Hermanns, H., and Katoen, J.-P.: 2000, in International Colloquium on Automata, Languages and Programming (ICALP), pp 780–792, London, UK

Baier, C., Katoen, J.-P., Hermanns, H., and Wolf, V.: 2005b, Inf. Comput. 200(2), 149

Bode, E., Herbstritt, M., Hermanns, H., Johr, S., Peikenkamp, T., Pulungan, R., Wimmer, R., and Becker, B.: 2006,

in QEST '06: Proceedings of the Third International Conference on the Quantitative Evaluation of Systems - (QEST'06), pp 167–178, IEEE Computer Society, Washington, DC, USA

Buchholz, P.: 1994,

Journal of Applied Probability 31, 59

D'Aprile, D., Donatelli, S., and Sproston, J.: 2004,

in Int. Symp. on Computer and Information Sciences, Vol. 3280 of LNCS, pp 543-552

D'Argenio, P. R., Jeannet, B., Jensen, H. E., and Larsen, K. G.: 2001,

in PAPM-PROBMIV '01: Proceedings of the Joint International Workshop on Process Algebra and Probabilistic Methods, Performance Modeling and Verification, pp 39–56, Springer-Verlag, London, UK

Derisavi, S., Hermanns, H., and Sanders, W. H.: 2003, Inf. Process. Lett. 87(6), 309

Fisler, K. and Vardi, M. Y.: 1998,

Conclusions and future works

in FMCAD, Vol. 1522 of LNCS, pp 115-132

Fisler, K. and Vardi, M. Y.: 1999, in CHARME, Vol. 1703 of LNCS, pp 338–342

Fisler, K. and Vardi, M. Y.: 2002, in Formal Methods in System Design, Vol. 21, pp 39–78

Hansson, N. and Jonsson, B.: 1994, Formal Aspects of Computing 6, 512

Hillston, J.: 1996, A compositional approach to performance modelling, Cambridge University Press, New York, NY, USA

Ibe, O. C. and Trivedi, K. S.: 1990, in IEEE J. on Selected Areas in Communications, Vol. 8, pp 1649–1657

Katoen, J.-P., Khattri, M., and Zapreev, I. S.: 2005, in *Quantitative Evaluation of Systems (QEST)*, pp 243–244

Kwiatkowska, M., Norman, G., and Parker, D.: 2004, International Journal on Software Tools for Technology Transfer (STTT) 6(2), 128

Kwiatkowska, M., Norman, G., and Parker, D.: 2006,

in T. Ball and R. Jones (eds.), Proc. 18th International Conference on Computer Aided Verification (CAV'06), Vol. 4114 of LNCS, pp 234-248, Springer-Verlag

Kwiatkowska, M., Norman, G., and Parker, D.: 2007, http://www.cs.bham.ac.uk/dxpprismcasestudies

Reiter, M. K. and Rubin, A.: 1998, in ACM Transactions on Information and System Security, Vol. 1, pp 66–92